• 中国科技核心期刊
  • JST收录期刊
CAO Si-long, WANG Ling-qian, XU Wei-qi, ZHOU Jian-song. Study on Wear Behavior and Mechanism of Two Friction Pairs in Water Medium[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 709-715. doi: 10.11993/j.issn.2096-3920.2021.06.010
Citation: CAO Si-long, WANG Ling-qian, XU Wei-qi, ZHOU Jian-song. Study on Wear Behavior and Mechanism of Two Friction Pairs in Water Medium[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 709-715. doi: 10.11993/j.issn.2096-3920.2021.06.010

Study on Wear Behavior and Mechanism of Two Friction Pairs in Water Medium

doi: 10.11993/j.issn.2096-3920.2021.06.010
  • Received Date: 2021-07-28
  • Rev Recd Date: 2021-09-06
  • Publish Date: 2021-12-31
  • In view of the friction and wear problems of key components of underwater weapons, research on friction pair materials suitable for water media and their tribological properties is carried out. Co-based alloy coatings are prepared by laser cladding technology. The tribological behavior of Co-based alloy coatings and Co-based alloy-PEF composite coatings sliding against two kinds of alloys in water is studied and compared with that of a 38CrMoAl-tin bronze friction pair. The results show that the 38CrMoAl-tin bronze friction pair has the highest friction coefficient and wear rate in water, with values of 0.420 and 1.503×10–5 mm3/N·m, respectively. The wear mechanism mainly involves severe adhesive wear and abrasive wear. The Co-based alloy coating exhibits high microhardness and resistance to plastic deformation. When the Co-based alloy coating slides against GH2130 and GH4169, the friction coefficients are 0.209 and 0.306, while the wear rates are 2.321×10–6 mm3/N·m and 4.283×10–6 mm3/N·m, respectively. The wear mechanism mainly involves abrasive wear. The friction coefficient of the friction pair, Co-based alloy-PEF composite coating and GH2130, is 0.079, and the wear rate is 1.257×10–8 mm3/N·m, which shows the best friction and wear performance among the four friction pairs.

     

  • loading
  • [1]
    岳灿甫, 吴始栋. 激光熔覆及其在水中兵器修复上的应用[J]. 鱼雷技术, 2007, 15(1): 1-5.

    Yue Can-fu, Wu Shi-dong. Laser Cladding and Its Applications to Repairing Underwater Weapons[J]. Torpedo Technology, 2007, 15(1): 1-5.
    [2]
    苏柏万, 孙北奇, 王玉良, 等. 水介质氮化硅全陶瓷滚动轴承磨损特性的研究[J]. 轴承, 2020(3): 22-25.

    Su Bai-wan, Sun Bei-qi, Wang Yu-liang, et al. Study on Wear Characteristics of Silicon Nitride Full-Ceramic rolling Bearings in Water Medium[J]. Bearing, 2020(3): 22-25.
    [3]
    宋伟, 尘强, 俞树荣, 等. TC4合金在不同环境介质中微动磨损行为研究[J]. 稀有金属材料与工程, 2020, 49 (7): 2393-2399.

    Song Wei, Chen Qiang, Yu Shu-rong, et al. Fretting Wear Behavior of TC4 Alloy in Different Environmental Media[J]. Rare Metal Materials and Engineering, 2020, 49(7): 2393-2399.
    [4]
    韩熙, 郑建云, 张帅拓, 等. Al-DLC薄膜结构及其在水介质下摩擦学性能研究[J]. 摩擦学学报, 2017, 37(3): 310-317.

    Han Xi, Zheng Jian-yun, Zhang Shuai-tuo, et al. Micro-structure and Tribological Properties of Al-DLC Coatings in Water[J]. Tribology, 2017, 37(3): 310-317.
    [5]
    方振兴, 祁文军, 李志勤. 304不锈钢激光熔覆搭接率对CoCrW涂层组织与耐磨及耐腐蚀性能的影响[J]. 材料导报, 2021, 35(12): 127-133.

    Fang Zhen-xing, Qi Wen-jun, Li Zhi-qin. Effect of Laser Cladding Lap ratio of 304 Stainless Steel on Microstructure, Wear resistance and Corrosion Resistance of CoCrW Coating[J]. Materials Report, 2021, 35(12): 127-133.
    [6]
    王荣健, 梁金禄, 黄小玉, 等. 油气管道37Mn5钢表面激光熔覆CoCrW涂层的组织及腐蚀性能[J]. 粉末冶金材料科学与工程, 2020, 25(6): 475-479.

    Wang Rong-jian, Liang Jin-lu, Huang Xiao-yu, et al. Micro-structure and Corrosion Properties of Laser Cladding CoCrW Coating on 37Mn5 Steel Surface of Oil and Gas Pipeline[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(6): 475-479.
    [7]
    周鸿凯, 皮智敏, 黄志武, 等. 多尺度WC-Co金属陶瓷涂层的研究现状[J]. 热加工工艺, 2021, 50(6): 18-21.

    Zhou Hong-kai, Pi Zhi-min, Huang Zhi-wu, et al. Research Status of Multi-modal WC-Co Cermet Coatings[J]. Hot Working Technology, 2021, 50(6): 18-21.

    [8]
    詹生. 热压烧结CoCrW基复合材料组织与力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
    [9]
    王刚刚. 超细晶CoCrW合金组织及力学性能的研究[D]. 太原: 太原科技大学, 2015.
    [10]
    杨中元, 李学锋, 张彬, 等. 超音速火焰喷涂CoCrW涂层的磨损特性[J]. 热喷涂技术, 2012, 4(4): 31-33.

    Yang Zhong-yuan, Li Xue-feng, Zhang Bin, et al. Wear Characteristics of HVOF Sprayed CoCrW Coating[J]. Thermal Spray Technology, 2012, 4(4): 31-33.
    [11]
    张淑婷, 马尧, 王辉, 等. 超音速火焰喷涂CoCrW耐磨涂层的性能研究[J]. 热喷涂技术, 2010, 2(3): 49-53.

    Zhang Shu-ting, Ma Yao, Wang Hui, et al. Study on the Properties of HVOF Sprayed CoCrW Coating[J]. Thermal Spray Technology, 2010, 2(3): 49-53.
    [12]
    王子雷. 激光熔覆NiCrBSi涂层的组织和耐磨性能[J]. 特种铸造及有色合金, 2013, 33(6): 509-511.

    Wang Zi-lei. Microstrucuture and Wear Resistance of Laser-Cladding NiCrBSi Coating[J]. Special Casting & Nonferrous Alloys, 2013, 33(6): 509-511.
    [13]
    Liu X Q, Yang J, Hao J Y, et al. A Near-Frictionless and Extremely Elastic Hydrogenated Amorphous Carbon Film with Self-Assembled Dual Nanostructure[J]. Advanced Materials, 2012, 24(34): 4614-4617.
    [14]
    Cabrera G, Caicedo J, Amaya C, et al. Enhancement of Mechanical and Tribological Properties in AISI D3 Steel Substrates by Using a Nonisostructural CrN/AlN Multilayer Coating[J]. Material Chemical Physics, 2011, 125(3): 576-586.
    [15]
    Luo X X, Yao Z J, Zhang P Z, et al. Laser cladding Fe-Al-Cr Coating with Enhanced Mechanical Properties[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(5): 1197-1204.
    [16]
    Wang X, Wang P, Yang S R, et al. Tribological Behaviors of Fullerene-Like Hydrogenated Carbon (FL-C:H) Film in Different Atmospheres Sliding Against Si3N4 Ball[J]. Wear, 2008, 265(11-12): 1708-1713.

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(184) PDF Downloads(59) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return