• 中国科技核心期刊
  • JST收录期刊
WU Jian-guo, CHEN Kai, CHEN Wu-jin, ZHAO Xiao-yu, ZHANG Tong-rui, CHENG Tao. Quantized Feedback Sliding Mode Control for AUV Based on Nonlinear Disturbance Observer[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 556-564. doi: 10.11993/j.issn.2096-3920.2021.05.007
Citation: WU Jian-guo, CHEN Kai, CHEN Wu-jin, ZHAO Xiao-yu, ZHANG Tong-rui, CHENG Tao. Quantized Feedback Sliding Mode Control for AUV Based on Nonlinear Disturbance Observer[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 556-564. doi: 10.11993/j.issn.2096-3920.2021.05.007

Quantized Feedback Sliding Mode Control for AUV Based on Nonlinear Disturbance Observer

doi: 10.11993/j.issn.2096-3920.2021.05.007
  • Received Date: 2020-11-19
  • Rev Recd Date: 2020-12-22
  • Publish Date: 2021-10-31
  • In a practical engineering application of autonomous undersea vehicles(AUVs), state variables must be quantified and transmitted to a controller because of a digital loop. Consequently, the stability of the system is significantly affected. To achieve AUV trajectory-tracking control, a quantized feedback sliding mode control(SMC) method based on a nonlinear disturbance observer(NDO) is proposed by considering the influence of state and control input quantization. First, NDO is used to estimate and compensate for external and unknown interference to suppress buffeting, which is a common step in traditional SMC. Then, an SMC scheme is proposed, in which the state variables and the upper bound of the quantization error of the input are added to the switching term of the SMC to overcome the influence of quantization on the stability of the system. In the first step, the trajectory is proved to be driven to a small strip area regardless of the initial value. In the second step, the sliding surface, s, converges to zero by dynamically adjusting the quantization parameter. Finally, the stability of the system is proved by applying the Lyapunov function. The simulation results show that the designed quantized sliding mode tracking controller allows the AUV to successfully track the expected trajectory

     

  • loading
  • [1]
    黄琰, 李岩, 俞建成, 等. AUV智能化现状与发展趋势[J]. 机器人, 2020, 42(2): 215-231.

    Huang Yan, Li Yan, Yu Jian-cheng, et al. State-of-the-Art and Development Trends of AUV Intelligence[J]. Robot, 2020, 42(2): 215-231.
    [2]
    Li S, Wang X. Finite-time Consensus and Collision Avoidance Control Algorithms for Multiple AUVs[J]. Automatica, 2013, 49(11): 3359-3367.
    [3]
    Xiang X, Yu C, Zhang Q. Robust Fuzzy 3D Path Following for Autonomous Underwater Vehicle Subject to Uncertainties[J]. Computers & Operations Research, 2016, 84: 165-177.
    [4]
    Yu X, Kaynak O. Sliding Mode Control Made Smarter: A Computational Intelligence Perspective[J]. IEEE Systems, Man, and Cybernetics Magazine, 2017, 3(2): 31-34.
    [5]
    Zhang G C, Huang H, Qin H D, et al. A Novel Adaptive Second Order Sliding Mode Path Following Control for a Portable AUV[J]. Ocean Engineering, 2018, 151: 82-92.
    [6]
    马利民. 欠驱动AUV全局无抖振滑模轨迹跟踪控制[J].智能系统学报, 2016, 11(2): 200-207.

    Ma Li-min. Global Chattering-free Sliding Mode Trajectory Tracking Control of Underactuated Autonomous Underwater Vehicles[J]. CAAI Transactions on Intelligent Systems, 2016, 11(2): 200-207.
    [7]
    Jiang C M, Wan L, Sun Y S, et al. Design of Novel Sling-mode Controller for High-velocity AUV with Con-sideration of Residual Dead Load[J]. Journal of Central South University, 2018, 25(1): 121-130.
    [8]
    Flavia B, Gianluca I, Sauro L, et al. Advanced Control for Fault-tolerant Dynamic Positioning of an Offshore Supply Vessel[J]. Ocean Engineering, 2015, 106: 472-484.
    [9]
    潘无为, 姜大鹏, 庞永杰, 等. 相位耦合振子模型下的AUV自适应编队控制算法[J]. 哈尔滨工程大学学报, 2017, 38(1): 115-119.

    Pan Wu-wei, Jiang Da-peng, Pang Yong-jie, et al. Adaptive Formation Control Algorithm for AUV on the Basis of the Coupled Phase Oscillator Model[J]. Journal of Harbin Engineering University, 2017, 38(1): 115-119.
    [10]
    杨超, 郭佳, 张铭钧. 基于RBF神经网络的作业型AUV自适应终端滑模控制方法及实验研究[J]. 机器人, 2018, 40(3): 336-345.

    Yang Chao, Guo Jia, Zhang Ming-jun. Adaptive Terminal Sliding Mode Control Method Based on RBF Neural Network for Operational AUV and Its Experimental Re-search[J]. Robot, 2018, 40(3): 336-345.
    [11]
    Taha E, Mohamed Z, Kamal Y T. Terminal Sliding Mode Control for the Trajectory Tracking of Underactuated Autonomous Underwater Vehicles[J]. Ocean Engineering, 2017, 129: 613-625.
    [12]
    Yan Y, Yu X H, Sun C. Quantization Effect on Sliding Mode Control of Uncertain Dynamical Systems[J]. Asian Journal of Control, 2016, 18(3): 1142-1146.
    [13]
    Corradini M L, Orlando G. Robust Quantized Feedback Stabilization of Linear Systems[J]. Automatica, 2008, 44(9): 2458-2462.
    [14]
    薛艳梅, 郝立颖. 量化参数不匹配的线性系统监督滑模控制设计[J]. 计算机工程与应用, 2015, 51(15): 22-27.

    Xue Yan-mei, Hao Li-ying. Supervisory-based Sliding Mode Control Design for a Class of Linear Systems Subject to Quantization Parameter Mismatch[J]. Computer Engineering and Applications, 2015, 51(15): 22-27.
    [15]
    Hao L Y, Yang G H. Robust Fault Tolerant Control Based on Sliding Mode Method for Uncertain Linear Systems with Quantization[J]. ISA transactions, 2013, 227(9): 692- 703.
    [16]
    Tabataba’i-Nasab, Fahimeh S, Keymasi K A, et al. Adaptive Nonlinear Control of an Autonomous Underwater Vehicle[J]. Transactions of the Institute of Measurement and Control, 2019, 41(11): 3121-3131.
    [17]
    Zheng B C, Yang G H. Quantized Output Feedback Stabilization of Uncertain Systems with Input Nonlin-earities Via Sliding Mode Control[J]. International Journal of Robust and Nonlinear Control, 2014, 24(2): 228-246.
    [18]
    Chen W H. Disturbance Observer Based Control for Nonlinear Systems[J]. IEEE/ASME Transactions on Mechatronics, 2004, 10(4): 706-710.
    [19]
    Utkin V. Variable Structure Systems with Sliding Modes[J]. IEEE Transactions on Automatic Control, 1977, 22(2): 212-222.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1950) PDF Downloads(41) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return