• 中国科技核心期刊
  • JST收录期刊
SHI Yao, GAO Shan, PAN Guang. Numerical Simulation of Hydrodynamic Characteristics of Double-Revolving Bodies in Underwater Salvo[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 524-532. doi: 10.11993/j.issn.2096-3920.2021.05.003
Citation: SHI Yao, GAO Shan, PAN Guang. Numerical Simulation of Hydrodynamic Characteristics of Double-Revolving Bodies in Underwater Salvo[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 524-532. doi: 10.11993/j.issn.2096-3920.2021.05.003

Numerical Simulation of Hydrodynamic Characteristics of Double-Revolving Bodies in Underwater Salvo

doi: 10.11993/j.issn.2096-3920.2021.05.003
  • Received Date: 2020-11-05
  • Rev Recd Date: 2020-12-09
  • Publish Date: 2021-10-31
  • To study hydrodynamic characteristics in the underwater salvo process of double-revolving bodies, a three-dimensional underwater salvo model is built in this study based on the homogeneous multiphase flow theory, standard RNG k-ε model, Singhal cavitation model, and overlapping mesh technique. Numerical simulations of the evolution of an unsteady cavity are conducted to determine the movement attitudes of double-revolving bodies at different launching velocities. The flow structure evolution, motion characteristics, and salvo velocity during the salvo process under a typical condition are analyzed. The results show that the maximum development of the cavity is observed during the early stage of water navigation. As the revolving bodies move towards the free surface, the cavity gradually sheds from its end towards its top. The structure collapses owing to a flow interference region in the salvo process, because the evolution of the cavity in the shoulder of the double-revolving bodies is from asymmetric to symmetric, causing mass center deflection of the revolving bodies from the inside to the outside. As the salvo velocity increases, the length of the cavity increases at the outlet of the tube moment, the intersection point of the deflection of the center of mass from the inside to the outside is delayed backward, and the angle of deflection decreases.

     

  • loading
  • [1]
    Plesset M S, Chapman R B. Collapse of an Initially Spherical Vapour Cavity in the Neighbourhood of a Solid Boundary[J]. Journal of Fluid Mechanics, 1971, 47(2): 283-290.
    [2]
    Plesset M S, Prosperetti A. Bubble Dynamics and Cavitation[J]. Annual Review of Fluid Mechanics, 1977, 9(1): 145-185.
    [3]
    Brennen C E. Cavitation and Bubble Dynamics[M]. Oxford, UK: Oxford University Press, 1995.
    [4]
    Dyment A, Flodrops J P, Paquet J B, et al. Gaseous Cavity at the Base of an Underwater Projectile[J]. Aerospace ence & Technology, 1998, 2(8): 489-504.
    [5]
    王一伟, 黄晨光, 吴小翠, 等. 航行体水下垂直发射空泡脱落条件研究[J]. 工程力学, 2015, 32(11): 33-39.

    Wang Yi-wei, Huang Chen-guang, Wu Xiao-cui, et al. Investigation of Cavities Shedding Condition on Underwater Vehicles in the Vertical Launch Process[J]. Engineering Mechanics, 2015, 32(4): 544-550.
    [6]
    王一伟, 黄晨光, 杜特专, 等. 航行体垂直出水载荷与空泡溃灭机理分析[J]. 力学学报, 2012, 44(1): 39-48.

    Wang Yi-wei, Huang Chen-guang, Du Te-zhuan, et al. Mechanism Analysis about Cavitation collapse Load of Underwater Vehicles in a Vertical Launching Process[J]. Chinese Journal of Theoretical and Applied Mechanics. 2012, 44(1): 39-48.
    [7]
    魏英杰, 闵景新, 王聪, 等. 潜射导弹垂直发射过程空化特性研究[J]. 工程力学, 2009, 26(7): 251-256.

    Wei Ying-jie, Min Jing-xin, Wang Cong, et al. Research on Cavitation of Vertical Launch Submarine Missile[J]. Engineering Mechanics, 2009, 26(7): 251-256.
    [8]
    权晓波, 燕国军, 李岩, 等. 水下航行体垂直发射尾空泡生成演化过程三维数值研究[J]. 船舶力学, 2014(7): 739-745.

    Quan Xiao-bo, Yan Guo-jun, Li Yan, et al. Three-dimensional Numerical Study on the Evolution Process of Tail Bubble of Underwater Vehicle Vertical Launching[J]. Journal of Ship Mechanics, 2014(7): 739-745.
    [9]
    程丽, 张亮, 吴德铭, 等. 无升力双体水动力干扰计算[J]. 哈尔滨工程大学学报, 2005, 26(1): 1-6.

    Cheng Li, Zhang Liang, Wu De-ming, et al. Hydrodynamic Interactions between Two Underwater Non-lifting Bodies[J]. Journal of Harbin Engineering University, 2005, 26(1): 1-6.
    [10]
    金大桥, 王聪, 魏英杰, 等. 水下轴向串列双圆柱体带空泡绕流研究[J]. 哈尔滨工程大学学报, 2010, 31(10): 1329-1334.

    Jin Da-qiao, Wang Cong, Wei Ying-jie, et al. Cavitating Flow Study of an Underwater Two Axial Circular Cylinder in Tandem Arrangement[J]. Journal of Harbin Engineering University, 2010, 31(10): 1329-1334.
    [11]
    何春涛. 典型运动体入水过程多相流动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
    [12]
    宋武超, 魏英杰, 路丽睿, 等. 基于势流理论的回转体并联入水双空泡演化动力学研究[J]. 物理学报, 2018, 67(22): 240-256.

    Song Wu-chao, Wei Ying-jie, Lu Li-rui, et al. Dynamic Characteristics of Parallel Water-entry Cavity Based on Potential Flow Theory[J]. Acta Physica Sinica, 2018, 67(22): 240-256.
    [13]
    Xu H, Wei Y, Wang C, et al. On Wake Vortex Encounter of Axial-symmetric Projectiles Launched Successively Underwater[J]. Ocean Engineering, 2019, 189: 106382.1-106382.11.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(101) PDF Downloads(28) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return