• 中国科技核心期刊
  • JST收录期刊
ZHANG Xin-ming, HAN Ming-lei, Yü Yi-rui, HUANG Tian-li, CHEN Qian, WU Ming. Development and Key Technologies of Submarine-UUV Cooperative Operation[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 497-508. doi: 10.11993/j.issn.2096-3920.2021.05.001
Citation: ZHANG Xin-ming, HAN Ming-lei, Yü Yi-rui, HUANG Tian-li, CHEN Qian, WU Ming. Development and Key Technologies of Submarine-UUV Cooperative Operation[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 497-508. doi: 10.11993/j.issn.2096-3920.2021.05.001

Development and Key Technologies of Submarine-UUV Cooperative Operation

doi: 10.11993/j.issn.2096-3920.2021.05.001
  • Received Date: 2021-05-11
  • Rev Recd Date: 2021-07-29
  • Publish Date: 2021-10-31
  • The cooperative operation of submarines and unmanned undersea vehicles(UUVs) is an important aspect of modern naval operational capabilities. It is also the most widely investigated field in terms of new operational concepts and new technologies in naval armaments. This study introduces the development of submarine-UUV cooperative operation, and mainly analyzes the developing strategies of undersea warfare system architecture, cooperative battle system and new undersea combat force in United States, Russia and United Kingdom; focuses on armament system technologies of undersea cooperative operation, including underwater multimedia transmission, network collaborative detection, multi-source heterogeneous information fusion, and operational application technologies, including control architecture, collaborative mission planning and allocation, autonomous decision-making with a lack of information, to provide technical reference for the coordinated development of armament technology and operational applications and the rapid formation of new underwater operational forces.

     

  • loading
  • [1]
    钟宏伟. 国外无人水下航行器装备与技术现状及展望[J]. 水下无人系统学报, 2017, 25(3): 215-225.

    Zhong Hong-wei. Review and Prospect of Equipment and Techniques for Unmanned Undersea Vehicle in Foreign Countries[J]. Journal of Unmanned Undersea Systems, 2017, 25(3): 215-225.
    [2]
    Whitman E C. SOSUS: The “Secret Weapon” of Undersea Surveillance[J]. Undersea Warfare. 2005, 7(2): 436.
    [3]
    Department of the Navy. Definitive Contract WD10H 199409DN6600194C6023[EB/OL]. Federal Contract Aw- ard. [1994-09-15]. https://govtribe.com/award/fedeal-contract-award/definitive-contract-wd10h199409dn6600194c6023.
    [4]
    Hatch M D, Kaina J L, Mahler R P, et al. Data Fusion Methodologies to Support Theater Level and Deployable Surveillance Systems[C]//Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA: IEEE, 1998, 1: 563- 567.
    [5]
    Rice J A. US Navy Seaweb Development[C]//Proceedings of the Second Workshop on Underwater Networks (WuWNet’07). Association for Computing Machinery. Montreal, Quebec, Canada: ACM, 2007.
    [6]
    Rice J A, Creber R K, Fletcher C L, et al. Seaweb Underwater Acoustic Nets[R]. San Diego, USA: Biennial Review 2001, SSC San Diego Technical Document TD 3117, 2001: 234-250.
    [7]
    Stewart M S, Pavlos J. A Means to Networked Persistent Undersea Surveillance(U)[C]//Submarine Technology Sy- mposium Session V. Stewart. British Columbia, Canada: STS, 2006: 16-18.
    [8]
    董晓明. 海上无人装备体系概览[M]. 哈尔滨: 哈尔滨工程大学出版社, 2020: 225-337.
    [9]
    DARPA. Department of Defense Fiscal Year(FY) 2018 Budget Estimates[EB/OL]. [2017-05-01]. https://www. darpa.mil/attachments/DARPA_FY18_Presidents_BudgetRequest.pdf.
    [10]
    DARPA. Mobile Off-board Clandestine Communications and Approach(MOCCA)[EB/OL]. Broad Agency Announcement. [2016-01-24]. https://govtribe.com/opportunity/federal-contract-opportunity/mobile-off-board-clandestine-communications-and-approach-mocca-darpabaa1610.
    [11]
    DARPA. Department of Defense Fiscal Year(FY) 2021 Budget Estimates[EB/OL]. Defense-Wide Justification Book Volume. [2020-02-02]. https://comptroller.defense.gov/Portals/45/Documents/de-fbudget/fy2021/budget_justifica-tion/pdfs/03_RDT_and_E/RDTE_Vol1_DARPA_ MasterJustificationBook_PB_2021.pdf.
    [12]
    NAVSEA. Annual Naval Technology Exercise(ANTX) 2016 Overview[EB/OL]. [2016-08-16]. https://www. Nav- sea.navy.mil/Portals/103/Documents/NUWC_Newport/A-NTXdocs/ANTX%202016Summary_Distro%20AFinal.p- df?ver=2016-12-07-110753-347.
    [13]
    AUVSI News. Navy Establishes First UUV Squadron, UUVRON 1[EB/OL]. [2017-09-29]. https://www.auvsi. org/navy-establishes-first-uuv-squadron-uuvron-1.
    [14]
    NAVSEA. Annual Naval Technology Exercise(ANTX) 2019 Directory[EB/OL]. [2019-08-29]. https://www.nav- sea.navy.mil/Portals/103/Documents/NUWC_Newport/ANTdocs/ANTX19Directory.pdf?ver=2019-08-21-113113-900.
    [15]
    Department of the Navy. The Navy Unmanned Undersea Vehicle(UUV) Master Plan[R/OL]. [2004-09-09]. https:// www.hsdl.org/?view&did=708654.
    [16]
    Commander, Submarine Forces. Design for Undersea Warfare[R/OL]. [2012-09-10]. https://www.hsdl.org/?vi- ew&did=726701.
    [17]
    The Defense Science Board. Next-Generation Unmanned Undersea Systems[R/OL]. [2016-10-12]. https://apps. dtic. mil/dtic/tr/fulltext/u2/1023641.pdf.
    [18]
    Undersea Warfare Chief Technology Office. The Undersea Warfare Science & Technology Objectives[R/OL]. [2016- 07-23]. https://defenseinnovationmarketplace.dtic.mil/wp-content/uploads/2018/02/USW_ST_Objectives.pdf.
    [19]
    Undersea Warfare Chief Technology Office. The Undersea Warfare Science & Technology Strategy[R/OL]. [2016- 05-23]. https://defenseinnovationmarketplace.dtic.mil/wp-content/uploads/2018/02/USW_Strategy.pdf.
    [20]
    Department of Defense. Unmanned Systems Intergrated Roadmap(2017-2042)[R/OL]. [2017-06-13]. https://s3. D- ocument-cloud.org/documents/4801652/UAS-2018-Road-map-1.pdf.
    [21]
    Department of the Navy. Department of Navy Unmanned Systems(UxS) Goals[R/OL]. [2018-01-11]. https://nps. edu/documents/105302057/105304195/ASN_RDA_SIGNED+DON+UxS+GOALS_2018.pdf/5452a9cb-f29f-4a4a-b493-fc3a75ca54e8.
    [22]
    Department of the Navy. Department of the Navy Strategic Roadmap for Unmanned Systems[R/OL]. [2018- 05-29]. https://www.secnav.navy.mil/rda/Documents/DON-Strategic-Roadmap-for-Unmanned-Systems.docx.
    [23]
    Bryan Clark. The Emerging Era in Undersea Warfare[R/OL]. CSBA. [2015-01-22]. https://csbaonline. org/uploads/documents/CSBA6292_(Undersea_Warfare_Re- print)_web.pdf.
    [24]
    Department of the Navy. Department of Navy Unmanned Campaign Framework[R/OL]. [2021-03-16]. https://www.navy.mil/Portals/1/Strategic/20210315%20Unmanned%20 Cam-paign_Final_LowRes.pdf?ver=LtCZ-BPlWki6vCBTd gtDMA%3D%3D.
    [25]
    Navy Naval Defense Industry News. Russian Northern Fleet Creates Submarine Division for Deep-Water Operations[EB/OL]. [2018-04-27]. https://www. navyrecogni-tion.com/index.php/naval-news/naval-news-archive/2018/april-2018-navy-naval-defense-news/6169-russian-northern-fleet-creates-submarine-division-for-deep-water-operations.html.
    [26]
    Kyle M. How Russia’s New Doomsday Torpedo Works [EB/OL]. [2018-03-07]. https://www.popularmechanics. com/military/weapons/a19160734/how-russias-new-doomsday-torpedo-works/.
    [27]
    IndraStra. Russia Launches Belgorod Nuclear Submarine to carry Poseidon Underwater Drones[EB/OL]. [2019-04-29]. https://medium.com/indrastra/russia-launches-bel- go-rod-nuclear-submarine-to-carry-poseidon-underwater- drones-d49bda5287e3.
    [28]
    Naval Technology. Royal Navy Details “Atlantis” Hybrid Underwater Capability[EB/OL]. [2021-04-06]. https:// www.naval-technology.com/news/royal-navy-details-atlantis-hybrid-underwater-capability/.
    [29]
    DARPA. Hydra[EB/OL]. Broad Agency Announcement. [2013-08-22]. https://govtribe.com/opportunity/federal- contract-opportunity/hydra-darpabaa1339.
    [30]
    DASA. Developing The Royal Navy’s Autonomous Underwater Capability[EB/OL]. Competition Document. [2019-6-6]. https://www.gov.uk/government/publications/ competition-developing-the-royal-navys-autonomous-un- der-water-capability/competition-document-developing-the-royal-navys-autonomous-underwater-capability.
    [31]
    陶伟. 基于马赛克战的水下有人-无人集群控制结构[J].指挥与控制学报, 2020, 6(3): 264-270.

    Tao Wei. Control Structure of Underwater Manned and Unmanned Swarm Based on Mosaic Warfare[J]. Journal of Command and Control, 2020, 6(3): 264-270.
    [32]
    吴超, 杜辉, 何青海. 水下“有人/无人”作战平台协同运用方式探讨[J]. 舰船科学技术, 2020, 42(17): 153-156.

    Wu Chao, Du Hui, He Qing-hai. Discussion on the cooperative use mode of underwater manned/unmanned combat platform[J]. Ship Science and Technology, 2020, 42(17): 153-156.
    [33]
    王圣洁, 康凤举, 韩翃. 潜艇与智能无人水下航行器协同系统控制体系及决策研究[J]. 兵工学报, 2017, 38(2): 335-344.

    Wang Sheng-jie, Kang Feng-ju. Han Hong. Research on Control and Decision-making of Submarine and Intelligent UUV Cooperative System[J]. Acta Armamentarii, 2017, 38(2): 335-344.
    [34]
    Hydromea. Hydromea Launches the Most Advanced Wireless Underwater Optical Modem LUMA X-the Future in Affordable High-Speed, Wireless Subsea Connectivi-ty[EB/OL]. [2020-10-08]. https://www.hydromea.com/2020/10/09/hydromea-launches-the-most-advanced-wireless-underwater-modem-luma-x-the-future-in-affordable-high-speed-wireless-subsea-connectivity/.
    [35]
    Tamura Y , Sakuma H , Morita K , et al. The First 0.14 dB/km Loss Optical Fiber and its Impact on Submarine Transmission[J]. Journal of Lightwave Technology, 2018, 36(1): 44-49.
    [36]
    Kemp M A, Franzi M, Haase A, et al. A High Q Piezoelectric Resonator as a Portable VLF Transmitter[J]. Nature Communications, 2019, 10(1): 1715.
    [37]
    Schneider J D, Domann J P, Panduranga M K, et al. Experimental Demonstration and Operating Principles of a Multiferroic Antenna[J]. Journal of Applied Physics, 2019, 126: 224104.
    [38]
    Schneider T, Schmidt H.Unified Command and Control for Heterogeneous Marine Sensing Networks[J]. Journal of Field Robotics, 2010, 27(6): 876-889.
    [39]
    Kalwa J.The GREX-project: Coordination and Control of Cooperating Heterogeneous Unmanned Systems in Un-certain Environments[C]//Oceans 2009-Europe. Bremen, Germany: IEEE, 2009.
    [40]
    张贺, 王申涛, 李海涛. 水下量子保密通信可行性分析[J]. 中国新通信, 2018, 20(8): 29-30.
    [41]
    程锦房, 张伽伟, 姜润翔, 等. 水下电磁探测技术的发展现状[J]. 数字海洋与水下攻防, 2019, 2(4): 45-49.

    Cheng Jin-fang, Zhang Jia-wei, Jiang Run-xiang, et al. Development Status of Underwater Electromagnetic Detection Technology[J]. Digital Ocean & Underwater War-fare, 2019, 2(4): 45-49.
    [42]
    谢伟, 陶浩, 龚俊斌, 等. 海上无人系统集群发展现状及关键技术研究进展[J]. 中国舰船研究. 2021, 16(1): 7-17, 31.

    Xie Wei, Tao Hao, Gong Jun-bin, et al. Research Advances in the Development Status and Key Technology of Unmanned Marine Vehicle Swarm Operation[J]. Chinese Journal of Ship Research, 2021, 16(1): 7-17, 31.
    [43]
    Gao J, Li P, Chen Z, et al. A Survey on Deep Learning for Multimodal Data Fusion[J]. Neural Computation, 2020, 32(5): 829-864.
    [44]
    唐胜景, 史松伟, 张尧, 等. 智能化分布式协同作战体系发展综述[J]. 空天防御, 2019, 2(1): 6-13.

    Tang Sheng-jing, Shi Song-wei, Zhang Yao, et al. Review on the Development of Intelligence-based Distributed Cooperative Operational System[J]. Air & Space Defense, 2019, 2(1): 6-13.
    [45]
    Millan P, Orihuela L, Vivas C, et al. Distributed Consen-sus-Based Estimation Considering Network Induced Delays and Dropouts[J]. Automatica, 2012, 48(10): 2726-2729.
    [46]
    李风雷, 卢昊, 宋闯, 等. 智能化战争与无人系统技术的发展[J]. 无人系统技术. 2018, 1(2): 15-23.

    Li Feng-lei, Lu Hao, Song Chuang, et al. Development of Intelligent Warfare and Unmanned System Technology[J]. Unmanned Systems Technology, 2018, 1(2): 15-23.
    [47]
    蒋荣华. 潜载UUV的作战使用分析[J]. 舰船电子工程,2015, 35(10): 17-20, 69.

    Jiang Rong-hua. Application Analysis of Submarine UUV[J]. Ship Electronic Engineering, 2015, 35(10): 17- 20, 69.
    [48]
    唐胜景, 史松伟, 张尧, 等. 智能化分布式协同作战体系发展综述[J]. 空天防御, 2019, 2(1): 6-13.

    Tang Sheng-jing, Shi Song-wei, Zhang Yao, et al. Review on the Development of Intelligence-based Distributed Cooperative Operational System[J]. Air & Space Defense, 2019, 2(1): 6-13.
    [49]
    万路军, 姚佩阳, 孙鹏. 有人/无人作战智能体分布式任务分配方法[J]. 系统工程与电子技术, 2013, 35(2): 310-316.

    Wan Lu-jun, Yao Pei-yang, Sun Peng. Distributed Task Allocation Method of Manned/Unmanned Combat Agents [J]. Systems Engineering and Electronics, 2013, 35(2): 310-316.
    [50]
    邹启杰, 张汝波, 唐平鹏, 等. 基于多属性决策的自主等级评估算法[J]. 华中科技大学学报(自然科学版), 2011, 39(z2): 382-384.

    Zou Qi-jie, Zhang Ru-bo, Tang Ping-peng, et al. Evaluation Algorithm for Autonomy Level Based on Multi-Attribute Decision Making[J]. Journal of Huazhong University of Science and Technology(Nature Science), 2011, 39(z2): 382-384.
    [51]
    张伟, 王乃新, 魏世琳, 等. 水下无人潜航器集群发展现状及关键技术综述[J]. 哈尔滨工程大学学报, 2020, 41(2): 289-297.

    Zhang Wei, Wang Nai-xin, Wei Shi-lin, et al. Overview of Unmanned Underwater Vehicle Swarm Development Status and Key Technologies[J]. Journal of Harbin Engineering University, 2020, 41(2): 289-297.
    [52]
    宋运忠, 杨飞飞. 基于行为法多智能体系统构形控制研究[J]. 控制工程, 2012, 19(4): 687-690.

    Song Yun-zhong, Yang Fei-fei. On Formation Control Based on Behaviour For Second-order Multi-agent System[J]. Control Engineering of China, 2012, 19(4): 687- 690.
    [53]
    张帅. 基于人工势场法的无人机编队关键技术研究[D].哈尔滨: 哈尔滨工业大学, 2018.
    [54]
    曹和云, 倪先胜, 何利勇, 等. 国外潜载UUV布放与回收技术研究综述[J]. 中国造船, 2014, 55(2): 200-208.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(2270) PDF Downloads(194) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return