• 中国科技核心期刊
  • JST收录期刊
HUANG Hong, LU Xi, WANG Jian. Near Field Shock Wave Numerical Simulation of Cylindrical Charge Underwater Explosion[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 471-476. doi: 10.11993/j.issn.2096-3920.2021.04.015
Citation: HUANG Hong, LU Xi, WANG Jian. Near Field Shock Wave Numerical Simulation of Cylindrical Charge Underwater Explosion[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 471-476. doi: 10.11993/j.issn.2096-3920.2021.04.015

Near Field Shock Wave Numerical Simulation of Cylindrical Charge Underwater Explosion

doi: 10.11993/j.issn.2096-3920.2021.04.015
  • Received Date: 2020-09-04
  • Rev Recd Date: 2020-10-10
  • Publish Date: 2021-08-31
  • Cylindrical charge, which is a common charge structure for an underwater explosion, is mainly used in far-field underwater explosions. However, there is little research on the near-field shock wave. In order to obtain the parameters related to the forward near-field shock wave power of conventional cylindrical charge underwater explosion, the near-field shock wave power field with the vertical distance of the front-end cylindrical charge x and horizontal distance y is established. In this paper, the underwater explosion process of TNT spherical charge based on equal charge and cylindrical charge, whose ratio of length to diameter ranges from 1.1~2, is simulated using the AUTODYN simulation software. The near-field shock wave attenuation law of cylindrical charge underwater explosion is analyzed. By combining the Cole empirical formula, the simulation value of the cylindrical charge is optimized, and an empirical formula for the forward near-field shock wave pressure peak of cylindrical charge is obtained through logistic regression. The average error of pressure peak is approximately 5%, validating the accuracy of this formula. The research results can be used for the calculation of the near field power assuming a cylindrical charge underwater explosion.

     

  • loading
  • [1]
    Stemberg H M. Underwater Detonation of Pentolite Cylinders[J]. Physics of Fluids, 1995, 30(3): 761-769.
    [2]
    Hammond L. Underwater Shock Wave Characteristics of Cylindrical Charges[R]. Australia: Defence Science and Technology Organisation. AMRL, DSTO-GD-0029, 1995.
    [3]
    明付仁, 张阿漫, 杨文山. 近自由面水下爆炸冲击载荷特性三维数值模拟[J]. 爆炸与冲击, 2012, 32(5): 508- 514.

    Ming Fu-ren, Zhang A-man, Yang Wen-shan. Three-dimensional Simulations on Explosive Load Characteristics of Underwater Explosion Near Free Surface[J]. Explosion and Shock Waves, 2012, 32(5): 508-514.
    [4]
    钟冬望, 黄小武, 殷秀红, 等. 水下爆炸冲击波的数值模拟与试验研究[J]. 爆破, 2015, 32(4): 17-20.

    Zhong Dong-wang, Huang Xiao-wu, Yin Xiu-hong, et al. Numerical Simulation and Experimental Study of Underwater Explosion Shock Wave[J]. Blasting, 2015, 32(4): 17-20.
    [5]
    赵利平, 徐亚辉, 黄筱云. 水下爆炸冲击过程三维数值模拟[J]. 长沙理工大学学报(自然科学版), 2019, 16(1): 66-72.

    Zhao Li-ping, Xu Ya-hui, Huang Xiao-yun. Three-dimensional Numerical Simulation of Underwater Explosion Process[J]. Journal of Changsha University of Science and Technology(Natural Science), 2019, 16(1): 66-72.
    [6]
    李元龙, 王金相, 申向军, 等. 水下爆炸冲击波作用下屏蔽装药的冲击引爆理论和仿真研究[J]. 振动与冲击, 2019, 38(11): 31-36.

    Li Yuan-long, Wang Jin-xiang, Shen Xiang-jun, et al. Ini-tiation Theory of Shield Explosive Impacted by Underwater Explosion Shock Wave and Its Simulation[J]. Journal of Vibration and Shock, 2019, 38(11): 31-36.
    [7]
    蒋国岩, 金辉, 李兵, 等. 水下爆炸研究现状及发展方向展望[J]. 科技导报, 2009, 27(9): 87-91.

    Jiang Guo-yan, Jin Hui, Li Bing, et al. Review of Studies on Underwater Explosion[J]. Science & Technology Review, 2009, 27(9): 87-91.
    [8]
    徐豫新, 王树山, 李园. 水下爆炸数值仿真研究[J]. 弹箭与制导学报, 2009, 29(6): 95-97, 102.

    Xu Yu-xin, Wang Shu-shan, Li Yuan. Study on Numerical Simulation of the Underwater Explosive[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(6): 95-97, 102.
    [9]
    周睿, 冯顺山, 吴成. 条形药包冲击波峰值超压工程计算模型[J]. 工程爆破, 2001, 7(4): 19-23.

    Zhou Rui, Feng Shun-shan, Wu Cheng. Calculation Model for Peak Pressure of Shock Wave from Linear Charges[J]. Engineering Blasting, 2001, 7(4): 19-23.
    [10]
    张鹏翔, 顾文彬, 叶序双. 浅层水中爆炸直达波压力峰值计算方法探讨[J]. 解放军理工大学学报(自然科学版), 2002, 3(1): 57-59.

    Zhang Peng-xiang, Gu Wen-bin, Ye Xu-shuang. Discussion on Calculation Method of Peak Pressure Subjected to Shallow-layer Water Explosion[J]. Journal of PLA University of science and Technology, 2002, 3(1): 57-59.
    [11]
    张弛宇, 郭锐, 刘荣忠, 等. 水下爆炸柱型装药与球形装药远场等效关系[J]. 鱼雷技术, 2017, 25(1): 65-70.

    Zhang Chi-yu, Guo Rui, Liu Rong-zhong, et al. Equivalent Relationship between Cylindrical Charge and Spherical Charge for Underwater Explosion[J]. Torpedo Technology, 2017, 25(1): 65-70.
    [12]
    王奕鑫, 马宏昊, 沈兆武, 等. 水下爆炸中水面效应以及药包形状对冲击波的影响[J]. 中国测试, 2018, 44(10): 7-13, 30.

    Wang Yi-xin, Ma Hong-hao, Shen Zhao-wu, et al. Effect of Water Surface and Shape of Charge on Shock Wave in Underwater Explosion[J]. China Measurement & Test, 2018, 44(10): 7-13, 30.
    [13]
    Cole R. H. Underwater Explosion[M]. New York: Dover Publications. INC, 1948.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(110) PDF Downloads(50) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return