• 中国科技核心期刊
  • JST收录期刊
ZHANG Han-wen, WANG Jun-xiong. Fault-tolerant Control of AUV Thruster Based on Adaptive Backstepping Sliding Mode[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 420-427. doi: 10.11993/j.issn.2096-3920.2021.04.008
Citation: ZHANG Han-wen, WANG Jun-xiong. Fault-tolerant Control of AUV Thruster Based on Adaptive Backstepping Sliding Mode[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 420-427. doi: 10.11993/j.issn.2096-3920.2021.04.008

Fault-tolerant Control of AUV Thruster Based on Adaptive Backstepping Sliding Mode

doi: 10.11993/j.issn.2096-3920.2021.04.008
  • Received Date: 2020-10-26
  • Rev Recd Date: 2020-12-02
  • Publish Date: 2021-08-31
  • To achieve the robustness requirements of an autonomous undersea vehicle(AUV) for motion control in the case of thruster failure, this study designs an adaptive backstepping sliding mode motion tracking controller for the six-degree-of-freedom nonlinear vector motion model of the AUV and uses it in the thrust allocation. In the thrust distribution, the fault characteristics of the thruster are considered, and a continuous time-varying fault model is established. The fault adjustment function is added by incorporating the fault information, through the pseudo-inverse technique, based on the configuration of the structure function of the adjustment controller. The control input can be changed to correct the fault, and the fault adjustment and control reconstruction are adopted for different types of faults. This method realizes a fault-tolerant control under the fault state of the thruster and effectively improves the application universality of the fault-tolerant control algorithm. A variety of failure modes are simulated to verify the effectiveness of the adaptive fault-tolerant controller for AUV motion control in the case of thruster failure.

     

  • loading
  • [1]
    Xiao L, Qu X, Lei W, et al. Three-Dimensional Path Following of an Underactuated AUV Based on Fuzzy Backstepping Sliding Mode Control[J]. International Journal of Fuzzy Systems, 2017, 20(1): 1-10.
    [2]
    施小成, 周佳加, 边信黔, 等. 模糊滑模变结构控制在AUV纵倾控制中的应用[J]. 计算机仿真, 2008, 25(10): 174-177.

    Shi Xiao-cheng, Zhou Jia-jia, Bian Xin-qian, et al. Simulation of Fuzzy Sliding-Mode Control for AUV Pitch Control[J]. Computer Simulation, 2008, 25(10): 174-177.
    [3]
    Chu Z, Xiang X, Zhu D, et al. Adaptive Fuzzy Sliding Mode Diving Control for Autonomous Underwater Vehicle with Input Constraint[J]. International Journal of Fuzzy Systems, 2018, 20:1460-1469.
    [4]
    Lucia M. H2 and H∞Designs for Diving and Course Control of an Autonomous Underwater Vehicle in Presence of Waves[J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 69-88.
    [5]
    刘旌扬, 冯正平, 易宏, 等. 水下机器人H∞控制系统设计[J]. 海洋工程, 2008, 26(3): 70-77.

    Liu Jing-yang, Feng Zheng-ping, Yi Hong, et al. Design of H∞Control System for Autonomous Underwater Vehicles[J]. The Ocean Engineering, 2008, 26(3): 70-77.
    [6]
    Cui R, Yang C, Li Y, et al. Adaptive Neural Network Control of AUVs with Control Input Nonlinearities Using Reinforcement Learning[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(6): 1019-1029.
    [7]
    Campos E, Monroy J, Abundis H, et al. A Nonlinear Controller Based on Saturation Functions with Variable Parameters to Stabilize an AUV[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 211-224.
    [8]
    边信黔, 程相勤, 贾鹤鸣, 等. 基于迭代滑模增量反馈的欠驱动AUV地形跟踪控制[J]. 控制与决策, 2011, 26(2): 132-135, 139.

    Bian Xin-qian, Cheng Xiang-qin, Jia He-ming, et al. A Bottom-following Controller for Underactuated AUV Based on Iterative Sliding and Increment Feedback[J]. Control and Design, 2011, 26(2): 132-135, 139.
    [9]
    刘富樯. 无人水下航行器执行机构故障诊断与容错控制研究[D]. 西安: 西北工业大学, 2015.
    [10]
    Arslan M S, Fukushima N, Hagiwara I. Nonlinear Optimal Control of an AUV and its Actuator Failure Compensation[C]//10th International Conference on Control, Automation, Robotics and Vision, ICARCV 2008, Hanoi, Vietnam: IEEE, 2008.
    [11]
    Podder T K, Antonelli G, Sarkar N. Fault Tolerant Control of an Autonomous Underwater Vehicle under Thruster Redundancy: Simulations and Experiments[C]//IEEE International Conference on Robotics and Automation. San Francisco, USA: IEEE, 2000.
    [12]
    Cristofaro A, Johansen T A. Fault Tolerant Control Allocation Using Unknown Input Observers[J]. Automatica, 2014, 50(7): 1891-1897.
    [13]
    Dos Santos C H F, Cardozo D I K, Reginatto R, et al. Bank of Controllers and Virtual Thrusters for Fault- tolerant Control of Autonomous Underwater Vehicles[J]. Ocean Engineering, 2016, 121: 210-223.
    [14]
    Sarkar N, Podder T K, Antonelli G. Fault-accommodating Thruster Force Allocation of an AUV Considering Thruster Redundancy and Saturation[J]. IEEE Transactions on Robotics & Automation, 2002, 18(2): 223-233.
    [15]
    Soylu S, Buckham B J, Podhorodeski R P. A Chattering-free Sliding-mode Controller for Underwater Vehicles with Fault-tolerant Infinity-norm Thrust Allocation[J]. Ocean Engineering, 2008, 35(16): 1647-1659.
    [16]
    Fossen T I. Marine Control Systems: Guidance, Navigation and Control of Ships[M]. Norway: Marine Cybernetics, 2002.
    [17]
    Rauber J G, Santos C H F D, Chiella A C B, et al. A Strategy for Thruster Fault-tolerant Control Applied to an AUV[C]//17th International Conference on Methods & Models in Automation & Robotics. Miedzyzdroje, Poland: IEEE, 2012.
    [18]
    高剑, 徐德民, 严卫生, 等. 基于自适应反演滑模控制的AUV水平面动力定位方法[J]. 机械科学与技术, 2007, 26(6): 738-740.

    Gao Jian, Xu De-min, Yan Wei-sheng, et al. Backstepping Sliding Mode Control of Dynamic Positioning of an Autonomous Underwater Vehicle(AUV)[J]. Mechanical Science and Technology for Aerospace Engineering, 2007, 26(6): 738-740.
    [19]
    Buckholtz K R. Approach Angle-based Switching Function for Sliding Mode Control Design[C]//Proceedings of the 2002 American Control Conference. Anchorage, USA: IEEE, 2002.
    [20]
    金鸿章, 罗延明, 肖真, 等. 抑制滑模抖振的新型饱和函数法研究[J]. 哈尔滨工程大学学报, 2007, 28(3): 288-291.

    Jin Hong-zhang, Luo Yan-ming, Xiao Zhen, et al. Investigation of a Novel Method of Saturation Function for Chattering Reduction of Sliding Mode Control[J]. Journal of Harbin Engineering University, 2007, 28(3): 288-291.
    [21]
    Capisani L M, Ferrara A, Ferreira de Loza, A, et al. Manipulator Fault Diagnosis via Higher Order Sliding-Mode Observers[J]. IEEE Transactions on Industrial Electronics, 2012, 59(10): 3979-3986.
    [22]
    Mahmoud Magdi S, Xia Y. Analysis and Synthesis of Fault-Tolerant Control Systems (Mahmoud/Analysis)|| Industrial Fault-Tolerant Architectures[M]//Analysis and Synthesis of Fault-Tolerant Control Systems. USA: John Wiley & Sons, Ltd, 2014: 175-218.
    [23]
    Omerdic E, Roberts G. Thruster Fault Diagnosis and Accommodation for Open-frame Underwater Vehicles[J]. Control Engineering Practice, 2004, 12(12): 1575-1598.
    [24]
    刘富樯, 徐德民, 高剑, 等. 水下航行器执行机构的故障诊断与容错控制[J]. 控制理论与应用, 2014, 31(9): 1143-1150.

    Liu Fu-qiang, Xu De-min, Gao Jian, et al. Fault Diagnosis and Fault Tolerant Control for Actuators of Underwater Vehicles[J]. Control Theory&Applications, 2014, 31(9): 1143-1150.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1637) PDF Downloads(57) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return