• 中国科技核心期刊
  • JST收录期刊
LIU Fen, PENG Bin, SUN Xiu-jun, SANG Hong-qiang. Numerical Simulation Analysis of Flexible Hydrofoil Propulsion Performance for Wave Glider[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 374-382. doi: 10.11993/j.issn.2096-3920.2021.04.002
Citation: LIU Fen, PENG Bin, SUN Xiu-jun, SANG Hong-qiang. Numerical Simulation Analysis of Flexible Hydrofoil Propulsion Performance for Wave Glider[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 374-382. doi: 10.11993/j.issn.2096-3920.2021.04.002

Numerical Simulation Analysis of Flexible Hydrofoil Propulsion Performance for Wave Glider

doi: 10.11993/j.issn.2096-3920.2021.04.002
  • Publish Date: 2021-08-31
  • The hydrofoil is a key component that determines the capability of wave power conversions and the navigation performance of wave gliders. The propulsion performance of a flexible hydrofoil is investigated in this study. The passive deformation process of a flexible hydrofoil under active heave motion is simulated using the COMSOL Multiphysics software according to the motion characteristics of a hydrofoil when the wave glider is working. The effects of wave and pitching motion parameters and the Strouhal number on the propulsion performance of the hydrofoil are investigated. The simulation results show that the propulsion performance of the hydrofoil increases with wave height and Strouhal number and decreases with wave period within a certain range. When the wave period is high, the change in wave height and wave period has little effect on the propulsion performance of the hydrofoil. In contrast, when the pitch and wave periods are equal, the pitching motion has a positive effect on the performance.

     

  • loading
  • [1]
    Daniel T, Manley J, Trenaman N. The Wave Glider: Enabling a New Approach to Persistent Ocean Observation and Research[J]. Ocean Dynamics, 2011, 61(10): 1509-1520.
    [2]
    Hine R, Willcox S, Hine G, et al. The Wave Glider: A Wave-Powered Autonomous Marine Vehicle[C]//Proceedings of MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges. Biloxi, USA: IEEE, 2009: 296-301.
    [3]
    廖煜雷, 李晔, 刘涛, 等. 波浪滑翔器技术的回顾与展望[J]. 哈尔滨工程大学学报, 2016, 37(9): 1227-1236.

    Liao Yu-lei, Li Ye, Liu Tao, et al. Unmanned Wave Glider Technology: State of Art and Perspective[J]. Journal of Harbin Engineering University, 2016, 37(9): 1227-1236.
    [4]
    桑宏强, 李灿, 孙秀军. 波浪滑翔器纵向速度与波浪参数定量分析[J]. 水下无人系统学报, 2018, 26(1): 16-22.

    Sang Hong-qiang, Li Can, Sun Xiu-jun. Quantitative Analysis on Longitudinal Velocity and Wave Parameter of Wave Glider[J]. Journal of Unmanned Undersea Systems, 2018, 26(1): 16-22.
    [5]
    吕元博, 田新亮, 李欣, 等. NACA 0012摆动扑翼水动力特性的二维数值模拟[J]. 中国舰船研究, 2018, 13(2): 7-15.

    Lü Yuan-bo, Tian Xin-liang, Li Xin, et al. Two-dimen- sional Numerical Simulation of NACA 0012 Flapping Foil Hydrodynamics[J]. Chinese Journal of Ship Research, 2018, 13(2): 7-15.
    [6]
    Liu P, Liu Y B, Huang S L, et al. Effects of Regular Waves on Propulsion Performance of Flexible Flapping Foil[J]. Applied Sciences, 2018, 8(6): 934.
    [7]
    Liu W, Xiao Q, Zhu Q. Passive Flexibility Effect on Oscillating Foil Energy Harvester[J]. AIAA Journal, 2016, 54(4): 1-16.
    [8]
    Alben S, Witt C, Baker T V, et al. Dynamics of Freely Swimming Flexible Foils[J]. Physics of Fluids, 2012, 24(5): 109-133.
    [9]
    Prempraneerach P, Hober F S, Triantfyllou M S. The Ef-fect of Chordwise Flexibility on the Trust and Efficiency of a Flapping foil[C]//Proceedings of the 13th International Symposium on Unmanned Untethered Submersible Technology. Durham, USA: IEEE, 2003: 130-128.
    [10]
    Katz J, Weihs D. Hydrodynamic Propulsion by Large Amplitude Oscillation of an Airfoil with Chordwise Flexibility[J]. Journal of Fluid Mechanics, 1978, 88(3): 485-497.
    [11]
    田宝强, 李玲珑. 蹼翼型波浪滑翔机结构设计和运动原理分析[J]. 中国机械工程, 2017, 28(24): 2939-2943.

    Tian Bao-qiang, Li Ling-long. Structure Design and Movement Principle of Wave Gliders with Webbed Wings[J]. China Mechanical Engineering, 2017, 28(24): 2939-2943.
    [12]
    周凯. 典型仿生水翼的推进及能量吸收机制研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
    [13]
    Kinsey T, Dumas G. Computational Fluid Dynamics Analysis of a Hydrokinetic Turbine Based on Oscillating Hydrofoils[J]. Journal of Fluids Engineering, 2012, 134(2): 021104.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(206) PDF Downloads(95) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return