• 中国科技核心期刊
  • JST收录期刊
WANG Jin-yun, WANG Meng-jun, ZHOU Hui-jie. Six-Degree-of-Freedom Ballistic Simulation of Underwater Anti-Frogman Rocket[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 313-319. doi: 10.11993/j.issn.2096-3920.2021.03.010
Citation: WANG Jin-yun, WANG Meng-jun, ZHOU Hui-jie. Six-Degree-of-Freedom Ballistic Simulation of Underwater Anti-Frogman Rocket[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 313-319. doi: 10.11993/j.issn.2096-3920.2021.03.010

Six-Degree-of-Freedom Ballistic Simulation of Underwater Anti-Frogman Rocket

doi: 10.11993/j.issn.2096-3920.2021.03.010
  • Received Date: 2020-06-20
  • Rev Recd Date: 2020-07-30
  • Publish Date: 2021-06-30
  • As a new type of preset weapon for coastal port defense, underwater rockets have the advantages of high speed, high lethality, and convenient use, which can effectively resist the invasion of the enemy frogman. To deeply explore its underwater ballistic-navigation characteristics, taking a certain type of underwater rocket as the research object, a hydrodynamic ballistic motion model was established, and the six-degree-of-freedom ballistic-navigation characteristics of the underwater rocket were simulated based on VC++ language self-programming, and its navigation stability was verified through of the underwater launch test. The results show that the rocket with an initial velocity of 100 m/s decreases to 65 m/s within 4.3 s and tends to be stable under a certain initial angle of attack, the ballistic horizontal range reaches 660 m, and the rocket height breaks through 37 m, the pitching angle of the rocket changes from 12° to -7° within 4s, the pitching angular velocity fluctuates from 5° to -8° in 3 s, the angle of attack changes from 5° to -6°, the trajectory tilt angle changes from initial -10° to -12°. This study can provide a reference for the ballistic design of a new generation of underwater anti-frogman preset weapons.

     

  • loading
  • [1]
    宋海龙. 水弹道建模与仿真方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 1-19.
    [2]
    邬明. 考虑空泡的空投航行器入水弹道研究[J]. 四川兵工学报, 2015, 36(3): 23-27.

    Wu Ming. Research on Water Entry and Underwater Trajectory of an Airborne Vehicle with Consideration of Cavity[J]. Journal of Sichuan Ordnance, 2015, 36(3): 23-27.
    [3]
    Chen C, Cao W, Wang C, et al. Trajectory Simulation for Underwater Vehicle with Power-launched [J]. Journal of Harbin Institute of Technology, 2016, 23(1): 17-22.
    [4]
    Ye H, Zhou H, Wang X. Modeling and Simulation on the Underwater Trajectory of Non-powered Vehicle Discharged from the Broadside[J]. Journal of Harbin Institute of Technology, 2016, 23(2): 79-86.
    [5]
    Zhou L, Yu Y. Study on Interaction Characteristics Between Multi-gas Jets and Water During the Underwater Launching Process[J]. Experimental Thermal and Fluid Science, 2017, 83: 200-206.
    [6]
    徐健, 杨臻, 李强. 基于Ls-Dyna软件的水下弹的外弹道仿真[J]. 火力与指挥控制, 2016, 41(3): 5-7.

    Xu Jian, Yang Zhen, Li Qiang. Simulation for Submarine Bullet’s Exterior Ballistic Based on Dyna[J]. Fire and Command Control, 2016, 41(3): 5-7.
    [7]
    黄闯. 跨声速超空泡射弹的弹道特性研究[D]. 西安: 西北工业大学, 2017: 67-94.
    [8]
    张学伟. 水下超空泡射弹运动仿真与弹道特性分析[D]. 太原: 中北大学, 2017: 18-25.
    [9]
    Jiang Y, Bai T, Gao Y, et al. Water Entry of a Constraint Posture Body Under Different Entry Angles and Ventilation Rates[J]. Ocean Engineering, 2018, 153: 53-59.
    [10]
    孟庆操, 杨光. 反蛙人杀伤弹水中弹道模型与仿真[J]. 火力与指挥控制, 2018, 43(5): 117-120.

    Meng Qing-cao, Yang Guang. Research on Underwater Ballistic Model and Simulation of Anti-frogman Fragmentation Bomb[J]. Fire and Command Control, 2018, 43(5): 117-120.
    [11]
    龚铂淳, 马少杰, 魏健. 水下单兵火箭弹弹道计算[J]. 兵器装备工程学报, 2018, 39(11): 44-48.

    Gong Bo-chun, Ma Shao-jie, Wei Jian. Ballistic Calculation of Underwater Individual Rocket[J]. Journal of Ordnance Equipment Engineering, 2018, 39(11): 44-48.
    [12]
    Degtiar V G, Pegov V I, Moshkin I Y, et al. Mathematical Modeling of the Processes of Heat and Mass Transfer of Hot Gas Jets with Fluid During Underwater Rocket Launches[J]. High Temperature, 2019, 57(5): 707-711.
    [13]
    Zhang X, Yu Y, Zhou L. Numerical Study on the Multiphase Flow Characteristics of Gas Curtain Launch for Underwater Gun[J]. International Journal of Heat and Mass Transfer, 2019, 134: 250-261.
    [14]
    Kumar N, Rani M. An Efficient Hybrid Approach for Trajectory Tracking Control of Autonomous Underwater Vehicles[J]. Applied Ocean Research, 2020, 95: 102053.
    [15]
    Guerrero J, Torres J, Creuze V. Adaptive Disturbance Observer for Trajectory Tracking Control of Underwater Vehicles[J]. Ocean Engineering, 2020, 200: 107080.
    [16]
    Xie T, Li Y, Jiang Y, et al. Back-stepping Active Disturbance Rejection Control for Trajectory Tracking of Under-actuated Autonomous Underwater Vehicles with Position Error Constraint[J]. International Journal of Advanced Robotic Systems, 2020, 3: 1-12.
    [17]
    Chen C, Yuan X, Liu X, et al. Experimental and Numerical Study on the Oblique Water Entry Impact of a Cavitating Vehicle with a Disk Cavitator[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 482-494.
    [18]
    Chen T, Huang W, Zhang W, et al. Experimental Inves- tigation on Trajectory Stability of High-speed Water Entry Projectiles[J]. Ocean Engineering, 2019, 175: 16-24.
    [19]
    侯宇, 黄振贵, 郭则庆, 等. 超空泡射弹小入水角高速斜入水试验研究[J]. 兵工学报, 2020, 41(2): 332-341.

    Hou Yu, Huang Zhen-gui, Guo Ze-qin, et al. Experimental Investigation on Shallow-angle Oblique Water-entry of a High-speed Supercavitating Projectile[J]. ACTA Armamentarii, 2020, 41(2): 332-341.
    [20]
    杨继锋, 马亮, 刘丙杰, 等. 空化条件下潜射航行体水弹道修正方法研究[J]. 弹箭与制导学报, 2020, 40(3): 27-30, 34.

    Yang Ji-feng, Ma Liang, Liu Bing-jie, et al. Research on Water Trajectory Correction Method of Submarine Launched Vehicle Based on Cavitation Conditions[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(3): 27-30, 34.
    [21]
    张代国, 潘菲菲, 张晓乐. 自旋前伸空化回转体高速斜人水稳定性仿真研究[J]. 数字海洋与水下攻防, 2020, 3(1): 40-45.

    Zhang Dai-guo, Pan Fei-fei, Zhang Xiao-le. Stability Simulation on High-speed Water Entry with Certain Angle of Self-spin Forward-extended Cavitating Body[J]. Digital Ocean & Underwater Warfare, 2020, 3(1): 40-45.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(113) PDF Downloads(104) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return