• 中国科技核心期刊
  • JST收录期刊
SUN Xiu-jun, LIU Jin-cheng, SANG Hong-qiang, LI Can. Propulsion Efficiency Analysis of Passive Flapping Foil Mechanism of Wave Glider[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 265-271. doi: 10.11993/j.issn.2096-3920.2021.03.003
Citation: SUN Xiu-jun, LIU Jin-cheng, SANG Hong-qiang, LI Can. Propulsion Efficiency Analysis of Passive Flapping Foil Mechanism of Wave Glider[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 265-271. doi: 10.11993/j.issn.2096-3920.2021.03.003

Propulsion Efficiency Analysis of Passive Flapping Foil Mechanism of Wave Glider

doi: 10.11993/j.issn.2096-3920.2021.03.003
  • Received Date: 2020-08-05
  • Rev Recd Date: 2020-09-25
  • Publish Date: 2021-06-30
  • The passive flapping foil mechanism of a wave glider is the key module that provides forward driving, and its propulsion efficiency directly affects the wave glider’s forward speed and position control accuracy. In this study, a complete analysis framework of the passive flapping foil propulsion efficiency was built, and a computational fluid dynamic(CFD) simulation model of the passive flapping foil propulsion motion is established. Simulation research on the passive flapping foil loaded with torsion spring under second-level sea state was conducted, and some simulation data were verified by experiments. The CFD simulation results show that the torsion spring stiffness has a significant impact on the propulsion performance of the passive flapping foil, and the passive flapping foil had a higher propulsion efficiency and speed when the torsion spring stiffness was 6 N·m·rad-1 in the second-level sea state. This study shows that the CFD simulation and experimental data follow the same trend, and the reliability of the CFD simulation model is high, which has guiding significance for the design of the wave glider’s passive-flapping foil mechanism.

     

  • loading
  • [1]
    Daniel T, Manley J, Trenaman N. The Wave Glider: Enabling a New Approach to Persistent Ocean Observation and Research[J]. Ocean Dynamics, 2011, 61(10): 1509-1520.
    [2]
    Hine R, Willcox S, Hine G, et al. The Wave Glider: A Wave-Powered Autonomous Marine Vehicle[C]//Marine Technology for Our Future: Global and Local Challenges. USA: IEEE, 2009: 296-301.
    [3]
    廖煜雷, 李晔, 刘涛, 等. 波浪滑翔器技术的回顾与展望[J]. 哈尔滨工程大学学报, 2016, 37(9): 1227-1236.

    Liao Yu-lei, Li Ye, Liu Tao, et al. Unmanned Wave Glider Technology: State of the Art and Perspective[J]. Journal of Harbin Engineering University, 2016, 37(9): 1227-1236.
    [4]
    Javed A, Djidjeli K, Xing J T. Low Reynolds Number Effect on Energy Extraction Performance of Semi-passive Flapping Foil[J]. Journal of Applied Fluid Mechanics, 2018, 11(6): 1613-1627.
    [5]
    Matthieu B, Maxime P D, Guy D. A Parametric Study and Optimization of the Fully-passive Flapping-foil Turbine at High Reynolds Number[J]. Renewable Energy, 2020, 146: 1958-1975.
    [6]
    Young J, Ashraf M A, Lai J C S, et al. Numerical Simulation of Fully Passive Flapping Foil Power Generation[J]. AIAA Journal, 2013, 51(11): 2727-2739.
    [7]
    Andersen A, Bohr T, Schnipper T, et al. Wake Structure and Thrust Generation of a Flapping Foil in Two-dimensional Flow[J]. Journal of Fluid Mechanics, 2017, 812: R4-1-R4-12.
    [8]
    Yang F M, Shi W C, Wang D Z. Systematic Study on Propulsive Performance of Tandem Hydrofoils for a Wave Glider[J]. Ocean Engineering, 2019, 179: 361-370.
    [9]
    李灿. 波浪滑翔器动力学分析及性能优化[D]. 天津: 天津工业大学, 2018.
    [10]
    Lopes D B S, Falc? de Campos, Sarmento A. An Analytical Model Study of a Flapping Hydrofoil for Wave Propulsion[C]//International Conference on Offshore Mechanics and Arctic Engineering. Madrid, Spain: Natural Ocean Engineering Laboratory(NOEL), 2018: 1-8.
    [11]
    Liu P, Su Y M, Liao Y L. Numerical and Experimental Studies on the Propulsion Performance of a Wave Glide Propulsor[J]. China Ocean Engineering, 2016, 30(3): 393-406.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(190) PDF Downloads(204) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return