• 中国科技核心期刊
  • JST收录期刊
ZHANG Lin-sen, NING Xiao-ling, HU Ping. A Review of Ultrasonic Coupled Contactless Energy Transfer Technology[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 257-264. doi: 10.11993/j.issn.2096-3920.2021.03.002
Citation: ZHANG Lin-sen, NING Xiao-ling, HU Ping. A Review of Ultrasonic Coupled Contactless Energy Transfer Technology[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 257-264. doi: 10.11993/j.issn.2096-3920.2021.03.002

A Review of Ultrasonic Coupled Contactless Energy Transfer Technology

doi: 10.11993/j.issn.2096-3920.2021.03.002
  • Received Date: 2020-11-20
  • Rev Recd Date: 2021-02-03
  • Publish Date: 2021-06-30
  • Ultrasonic coupled contactless energy transfer (UCCET) is a relatively new type of contactless energy transfer technology. Based on the analysis of the application and advantages of UCCET, the fundamental principle of UCCET was analyzed, and the technical characteristics of UCCET are summarized in this paper. Then, the research status of UCCET in the fields of bio-implantable medical device power supply, device power supply through the metal medium, device power supply through air, and device power supply through the water medium using UCCET was reviewed for low-power and high-power applications. Finally, the technical challenges of UCCET in acoustic impedance matching, transmission mechanism research, and transducer design theory are presented in this paper.

     

  • loading
  • [1]
    Leung H F, Willis B J, Hu A P. Wireless Electric Power Transfer Based on Acoustic Energy Through Conductive Media[C]//2014 9th IEEE Conference on Industrial Elec-tronics and Applications. Hangzhou, China: IEEE, 2014: 1555-1560.
    [2]
    毕宏振. 基于压电换能器的无线能量传输系统研究[D]. 北京: 北京交通大学, 2019.
    [3]
    吴旭升, 孙盼, 杨深钦, 等. 水下无线电能传输技术及应用研究综述[J]. 电工技术学报, 2019, 34(8): 1559-1568.

    Wu Xu-sheng, Sun Pan, Yang Shen-qin, et al. Review on Underwater Wireless Power Transfer Technology and Its Application[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1559-1568.
    [4]
    程时杰, 陈小良, 王军华, 等. 无线输电关键技术及其应用[J]. 电工技术学报, 2015, 30(19): 68-84.

    Cheng Shi-jie, Chen Xiao-liang, Wang Jun-hua, et al. Key Technologies and Applications of Wireless Power Transmission[J]. Transactions of China Electrotechnical Society, 2015, 30(19): 68-84.
    [5]
    Karalis A, Joannopoulos J D, Soljacic M. Efficient Wire-less Nonradiative Mid-Range Energy Transfer[J]. Annals of Physics, 2008, 323(1): 34-48.
    [6]
    Kurs, André . Karalis, et al. Wireless Power Transfer Via Strongly Coupled Magnetic Resonances[J]. Science, 2007, 317(5834): 83-86.
    [7]
    邹玉炜, 黄学良, 柏杨, 等. 基于PZT的超声波无接触能量传输系统的研究[J]. 电工技术学报, 2011, 26(9): 144-150.

    Zou Yu-wei, Huang Xue-liang, Bai Yang, et al. Research on Contactless Ultrasonic Energy Transfer System Based on PZT[J]. Transactions of China Electrotechnical Society, 2011, 26(9): 144-150.
    [8]
    Cochran G V B, Johnson M W, Kadaba M P, et al. Piezo-electric Internal Fixation Devices: A New Approach to Electrical Augmentation of Osteogenesis[J]. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 1985, 3(4): 508-513.
    [9]
    Cochran G V B, Kadaba M P, Palmieri V R. External Ultrasound Can Generate Microampere Direct Currents in Vivo from Implanted Piezoelectric Materials[J]. Journal of Orthopaedic Research, 1988, 6(1): 145-147.
    [10]
    RamRakhyani A K, Mirabbasi S, Chiao M. Design and Optimization of Resonance-Based Efficient Wireless Power Delivery Systems for Biomedical Implants[J]. IEEE Transactions on Biomedical Circuits and Systems, 2011, 5(1): 48-63.
    [11]
    Maleki T, Cao N, Song S H, et al. An Ultrasonically Powered Implantable Micro-Oxygen Generator(IMOG)[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(11): 3104-3111.
    [12]
    Yang Z, Zeng D, Wang H, et al. Harvesting Ultrasonic Energy Using 1-3 Piezoelectric Composites[J]. Smart Materials & Structures, 2015, 24(7): 075029.
    [13]
    Shmilovitz D, Ozeri S, Wang C C, et al. Noninvasive Control of the Power Transferred to an Implanted Device by an Ultrasonic Transcutaneous Energy Transfer Link [J]. IEEE Transactions on Biomedical Engineering, 2014, 61(4): 995-1004.
    [14]
    Larson P J, Towe B C. Miniature Ultrasonically Powered Wireless Nerve Cuff Stimulator[C]//2011 5th International IEEE/EMBS Conference on Neural Engineering. Cancun, Mexico: IEEE, 2011.
    [15]
    Rosa B M G, Yang G Z. Active Implantable Sensor Pow-ered By Ultrasounds with Application in the Monitoring of Physiological Parameters for Soft Tissues[C]//2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks(BSN). San Francisco, CA, USA: IEEE, 2016: 318-323.
    [16]
    Sanni A, Vilches A, Toumazou C. Inductive and Ultra-sonic Multi-Tier Interface for Low-Power, Deeply Implantable Medical Devices[J]. IEEE Transactions on Bio-medical Circuits and Systems, 2012, 6(4): 297-308.
    [17]
    Sanni A, Vilches A. Powering Low-Power Implants Using PZT Transducer Discs Operated in the Radial Mode[J]. Smart Materials and Structures, 2013, 22(11):1-12.
    [18]
    Lee S Q, Youm W, Hwang G. Biocompatible Wireless Power Transferring Based on Ultrasonic Resonance Devices[J]. The Journal of the Acoustical Society of America, 2013, 133(5): 3268-3268.
    [19]
    张春杨, 许佳琪, 张菁霓, 等. 心脏起搏器超声波体外无线充电技术研究[J]. 透析与人工器官, 2018, 29(1): 21-24.

    Zhang Chun-yang, Xu Jia-qi, Zhang Jing-ni, et al. Ultra-sonic in Vitro Wireless Charging Technology for Cardiac Pacemaker[J]. Chinese Journal of Dialysis and Artificial Organs, 2018, 29(1):21-24.
    [20]
    李志坚, 庄甘霖, 吴朝晖, 等. 超声波无线能量传输系统建模[J]. 华南理工大学学报(自然科学版), 2018, 46 (3): 72-77.

    Li Zhi-jian, Zhuang Gan-lin, Wu Zhao-hui, et al. Modeling of Ultrasonic Wireless Electrical Energy Transfer System[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(3): 72-77.
    [21]
    Rosa B M G, Yang G Z. Ultrasound Powered Implants: Design, Performance Considerations and Simulation Results[J]. Scientific Reports, 2020,10: 1-16.
    [22]
    Shih P, Shih W. Design, Fabrication, and Application of Bio-Implantable Acoustic Power Transmission[J]. Journal of Microelectromechanical System, 2010, 19(3): 494-502.
    [23]
    戴卫力, 费峻涛, 肖建康. 无线电能传输技术综述及应用前景[J]. 电气技术, 2010, 11(7): 1-6.

    Dai Wei-li, Fei Jun-tao, Xiao Jian-kang. An Overview and Application Prospect of Wireless Power Transmission Technology[J]. Electrical Engineering, 2010, 11(7): 1-6.
    [24]
    Mazzilli F, Peisino M, Mitouassiwou R, et al. Invitro Platform to Study Ultrasound as Source for Wireless Energy Transfer and Communication for Implanted Medical Devices[C]//2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010: 3751-3754.
    [25]
    Cotté B, Lafon C, Dehollain C, et al. Theoretical Study for Safe and Efficient Energy Transfer to Deeply Implanted Devices Using Ultrasound[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(8): 1674-1685.
    [26]
    许康, 陈希有, 刘丹宁. 海下超声耦合无线电能传输系统电学阻抗变换技术[J]. 中国电机工程学报, 2015, 35 (17): 4461-4465.

    Xu Kang, Chen Xi-you, Liu Dan-ning. Electrical Impedance Transformation Techniques for an Ultrasonic Coupling Wireless Power Transfer System Under Sea Water[J]. Proceedings of the CSEE, 2015, 35(17): 4461-4465.
    [27]
    Kawanabe H, Katane T, Saotome H O. et al. Power and Information Transmission to Implanted Medical Device Using Ultrasonic[J]. Jpn. J. Appl. Phys., 2001, 40(5B): 3865-3868.
    [28]
    Arra S, Leskinen J, Heikkil?J, et al. Ultrasonic Power and Data Link for Wireless Implantable Applications[C]//2007 2nd International Symposium on Wireless Pervasive Computing. San Juan, PR, USA: IEEE, 2007: 567-571.
    [29]
    Bao X, Doty B J, Sherrit S, et al. Wireless Piezoelectric Acoustic-Electric Power Feedthru[C]//Proceedings Volume 6529, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007. San Diego, CA, USA: SPIE, 2007: 6529-6533.
    [30]
    Sherrit S, Bao X, Badescu M, et al. 1 kW Power Transmission Using Wireless Acoustic-Electric Feedthrough (WAEF)[C]//11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Long Beach, CA, US: ASCE, 2008:1-10.
    [31]
    赵鑫. 纵振式超声波无线电能传输装置仿真与实验[J]. 长春工业大学学报, 2017, 38(3): 251-255.

    Zhao Xin. Simulation and Experiment of Wireless Power Transmission Device with Longitudinal Ultrasonic Vibration[J]. Journal of Changchun University of Technology, 2017, 38(3): 251-255.
    [32]
    Graham D J, Neasham J A, Sharif B S, et al. Investigation of Methods for Data Communication and Power Delivery Through Metals[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4972-4980.
    [33]
    Lawry T J, Saulnier G J, Ashdown J D, et al. Penetration-free System for Transmission of Data and Power Through Solid Metal Barriers[C]//2011-MILCOM 2011 Military Communications Conference. Baltimore, MD, USA: IEEE, 2011: 389-395.
    [34]
    Lawry T J, Wilt K R, Ashdown J D, et al. A High-Per- formance Ultrasonic System for the Simultaneous Transmission of Data and Power Through Solid Metal Barriers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60(1): 194-203.
    [35]
    曾凡冲. 超声换能器的设计理论研究[D]. 北京: 北方工业大学, 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(250) PDF Downloads(155) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return