• 中国科技核心期刊
  • JST收录期刊
FU Tong-qiang, HU Qiao, LIU Yu, ZHENG Hui-wen. Underwater Target Identification Method Based on Optimized 2D Variational Mode Decomposition and Transfer Learning[J]. Journal of Unmanned Undersea Systems, 2021, 29(2): 153-163. doi: 10.11993/j.issn.2096-3920.2021.02.004
Citation: FU Tong-qiang, HU Qiao, LIU Yu, ZHENG Hui-wen. Underwater Target Identification Method Based on Optimized 2D Variational Mode Decomposition and Transfer Learning[J]. Journal of Unmanned Undersea Systems, 2021, 29(2): 153-163. doi: 10.11993/j.issn.2096-3920.2021.02.004

Underwater Target Identification Method Based on Optimized 2D Variational Mode Decomposition and Transfer Learning

doi: 10.11993/j.issn.2096-3920.2021.02.004
  • Received Date: 2020-05-22
  • Rev Recd Date: 2020-09-01
  • Publish Date: 2021-04-30
  • Intelligent identification of underwater targets using the traditional underwater acoustic target identification method has limitations owing to the complexity and variability of marine environments. The data sets that are constructed based on single-domain features cannot be used to characterize the global information of the target signal and the traditional machine learning and deep learning methods demonstrate a low generalization ability for small sample targets. To solve the problem of low accuracy and efficiency of traditional underwater acoustic target identification methods in complex marine environments, an underwater target identification method based on optimized two-dimen- sional variational mode decomposition(2D-VMD) and transfer learning is proposed herein. This method obtains the time-frequency map of the underwater target by wavelet transform and then uses the optimized 2D-VMD method to adaptively select the effective mode to achieve the separation of the target effective mode and the noise mode. The denoising of the time-frequency map is completed, and the classic texture features of the image are extracted for comparative analysis. Finally, through the transfer learning strategy being adopted, the model transfer learning verification based on InceptionV3 is realized, and the classification and identification for small sample data set of underwater targets are completed. Combined with the classification test experiment of five types of underwater targets in ShipsEar, the results show that: the underwater target identification method based on optimized 2D-VMD and transfer learning shows good feature extraction and denoising capabilities while taking into account the accuracy of underwater target identification and efficiency requirements. Moreover, it provides theoretical and technical support for the detection and identification of intelligent targets of marine equipment.

     

  • loading
  • [1]
    何春艳. 水下目标瞬态辐射噪声分析与评价[D]. 哈尔滨: 哈尔滨工程大学, 2013.
    [2]
    陶笃纯. 舰船噪声节奏的研究(Ⅰ)——数学模型及功率谱密度[J]. 声学学报, 1983, 8(2): 65-76.

    Tao Du-chun. Study on the Ship’s Noise Rhythm (Ⅰ)——Mathematical Model and Power Spectral Density[J]. Chinese Journal of Acoustics, 1983, 8(2): 65-76.
    [3]
    孙昕, 张世海, 翟东民. 水下航行器辐射噪声的仿真实现[J]. 水雷战与舰船防护, 2017, 25(2): 66-69.

    Sun Xin, Zhang Shi-hai, Zhai Dong-min. Simulation Realization of Radiated Noise from Underwater Vehicles[J]. Digital Ocean & Underwater Warfare, 2017, 25(2): 66-69.
    [4]
    王晓峰, 王炳和, 相敬林. 基于舰船辐射噪声时-频分析与线谱提取[J]. 电声技术, 2005(11): 61-63.

    Wang Xiao-feng, Wang Bing-he, Xiang Jing-lin. Time-Frequency Analysis of Ship-Radiated Noise and Line Spectrum Extraction Based on STFT[J]. Audio Engineering, 2005(11): 61-63.
    [5]
    庄瑞, 赵云冬. 一种提取水中目标水声信号时频特征的方法[J]. 舰船电子工程, 2018, 38(3): 135-136, 158.

    Zhuang Rui, Zhao Yun-dong. A Method for Extracting the Time-frequency Characteristics of Underwater Acoustic Signals in Water[J]. Ship Electronic Engineering, 2018, 38(3): 135-136, 158.
    [6]
    Hemminger T L, Pao Y H. Detection and Classification of Underwater Acoustic Transients Using Neural Networks[J]. IEEE Transactions on Neural Networks, 1994, 5(5): 712-718.
    [7]
    Shyu H C, Sun Y S. Underwater Acoustic Signal Analysis by Multiscaling and Multitranslation Wavelets[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1998, 3391: 628-636.
    [8]
    章新华, 王骥程, 林良骥. 基于小波变换的舰船辐射噪声特征提取[J]. 声学学报, 1997, 22(2): 139-137.

    Zhang Xin-hua, Wang Ji-cheng, Lin Liang-ji. Feature Extraction of Ship Radiated Noise Based on Wavelet Transform[J]. Chinese Journal of Acoustics, 1997, 22(2): 139-137.
    [9]
    李启飞, 吴芳, 韩蕾蕾. 基于 AlexNet 迁移学习的磁异常信号检测方法[J]. 水下无人系统学报, 2020, 28(2): 162-167.

    Li Qi-fei, Wu Fang, Han Lei-lei. Magnetic Anomaly Signal Detection Method Based on AlexNet Transfer Learning[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 162-167.
    [10]
    王维刚. 基于时频图像识别的旋转机械多特征融合故障诊断方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
    [11]
    Aysum S, Hasan S. Deep Convolutional Neural Network-based Automatic Classification of Neonatalhip Ultrasound Images: a Novel Data Augmentation Approach with Speckle Noise Reduction[J]. Ultrasound in Medicine & Biology, 2019, 46(3): 735-749.
    [12]
    洪礼聪. 基于时频图像和卷积神经网络的尾水管涡带状态识别[D]. 武汉: 武汉大学, 2018.
    [13]
    Yosinski J, Clune J, Bengio Y, et al. How Transferable are Features in Deep Neural Networks?[C]//Advances in Neural Information Processing Systems 27. [S.l.]: NIPS, 2014.
    [14]
    Fischer W, Moudgalya S S, Cohn J D, et al. Sparse Coding of Pathology Slides Compared to Transfer Learning with Deep Neural Networks[J]. BMC Bioinformatics, 2018, 19(S18): 489.
    [15]
    王斐, 吴仕超, 刘少林. 基于脑电信号深度迁移学习的驾驶疲劳检测[J]. 电子与信息学报, 2019, 41(9): 2264-2272.

    Wang Fei, Wu Shi-chao, Liu Shao-lin. Driver Fatigue Detection through Deep Transfer Learning in an Electroencephalogram-based System[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2264-2272.
    [16]
    朱兆彤, 付学志, 胡友峰. 一种利用迁移学习训练卷积神经网络的声呐图像识别方法[J]. 水下无人系统学报, 2020, 28(1): 89-96.

    Zhu Zhao-tong, Fu Xue-zhi, Hu You-feng. A Sonar Image Recognition Method Using Transfer Learning to Train Convolutional Neural Networks[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 89-96.
    [17]
    Dragomiretskiy K, Zosso D. Two-Dimensional Variational Mode Decomposition[C]//Energy Minimization Methods in Computer Vision and Pattern Recognition. Switzerland: Springer, 2015: 197-208.
    [18]
    Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the Inception Architecture for Computer Vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 2818-2826.
    [19]
    Chollet F. Keras: The Python Deep Learning Library[EB/OL]. Keras [2020-04-16]. https://keras.io.
    [20]
    Santos-Dominguez D, Torres-Guijarro S, Cardenal-Lopez A, et al. ShipsEar: An Underwater Vessel Noise Database[J]. Applied Acoustics, 2016, 113: 64-69.
    [21]
    徐智, 唐刚, 刘伟, 等. 基于变分模态分解参数优化的地震随机噪声去除方法[J]. 北京化工大学学报(自然科学版), 2019, 46(5): 60-68.

    Xu Zhi, Tang Gang, Liu Wei, et al. Seismic Random Noise Removal Method Based on Optimization of Variational Mode Decomposition Parameters[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2019, 46(5): 60-68.
    [22]
    史拓, 陈艳静. 舰船辐射噪声特性的模拟与仿真[J]. 军民两用技术与产品, 2016(4): 61-62.

    Shi Tuo, Chen Yan-jing. Simulation and Simulation of Radiated Noise Characteristics of Warships[J]. Dual Use Technologies & Products, 2016(4): 61-62.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(251) PDF Downloads(142) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return