• 中国科技核心期刊
  • JST收录期刊
ZHU Zhi-peng, ZHU Zhi-yu. Method for Detecting and Ranging an Underwater Guided Light Source Based on Binocular Vision[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 065-73. doi: 10.11993/j.issn.2096-3920.2021.01.010
Citation: ZHU Zhi-peng, ZHU Zhi-yu. Method for Detecting and Ranging an Underwater Guided Light Source Based on Binocular Vision[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 065-73. doi: 10.11993/j.issn.2096-3920.2021.01.010

Method for Detecting and Ranging an Underwater Guided Light Source Based on Binocular Vision

doi: 10.11993/j.issn.2096-3920.2021.01.010
  • Received Date: 2020-06-18
  • Rev Recd Date: 2020-07-21
  • Publish Date: 2021-03-01
  • To meet the requirements of high accuracy, real-time performance, and robustness in autonomous underwater vehicle(AUV) underwater docking, this study proposes a binocular vision-based underwater guidance light source detection and ranging method. The main processes of this method includes underwater camera calibration, denoising of original images, detection of light sources, and location calculation. In the original image denoising stage, a Laplace operator is introduced to improve the mean denoising algorithm and enhance the image to highlight the light source. Then, an adaptive threshold binary image based on the dichotomy is used to effectively separate the light source from the background. Light sources on the left and right imaging planes are then detected and matched. Finally, according to the principle of binocular location, the relative position is solved by using the detected light source information. In this method, traditional mean denoising is improved for an underwater environment, and information of the guided light source is highlighted. The best image binary threshold is obtained by using the connected domain as the cyclic judgment condition, and the light source center is determined by weighted centroid detection method. The method is verified in specific experiments that meet the requirements of underwater docking accuracy. In addition, real-time performance is optimized.

     

  • loading
  • [1]
    Liam P, Sajad S, Mae S, et al. AUV Navigation and Localization: A Review[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1): 131-149.
    [2]
    Inzartev A V, Matvienko Y V, Pavin A M, et al. Investigation of Autonomous Docking System Elements for Long Term AUV[C]//Proceedings of MTS/IEEE Oceans. Washington, USA: IEEE, 2005: 388-393.
    [3]
    孙叶义, 武皓微, 李晔, 等. 智能无人水下航行器水下回收对接技术综述[J]. 哈尔滨工程大学学报, 2019, 40(1): 1-11.

    Sun ye-yi, Wu Hao-wei, Li Ye, et al. Review of Underwater Docking Technology for Intelligent Unmanned Underwater Vehicle[J]. Journal of Harbin Engineering University, 2019, 40(1): 1-11
    [4]
    Yao P, Qi S B. Obstacle-avoiding Path Planning for Multiple Autonomous Underwater Vehicles with Simultaneous Arrival[J]. Science China(Technological Sciences), 2019, 62(1): 121-132.
    [5]
    赵霞, 袁家政, 刘宏哲. 基于视觉的目标定位技术的研究进展[J]. 计算机科学, 2016, 43(6): 10-16, 43.

    Zhao Xia, Yuan Jia-zheng, Liu Hong-zhe. Advances in Vision-based Target Location Technology[J]. Computer Science, 2016, 43(6): 10-16, 43.
    [6]
    姜言清. AUV回收控制的关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
    [7]
    王晓娟. 基于视觉的AUV水下回收导引定位技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
    [8]
    Li Y, Jiang Y, Cao J, et al. AUV Docking Experiments Based on Vision Positioning Using Two Cameras[J]. Ocean Engineering, 2015, 110: 163-173.
    [9]
    王国权, 周小红, 蔚立磊. 基于分水岭算法的图像分割方法研究[J]. 计算机仿真, 2009, 26(5): 255-258.

    Wang Guo-quan, Zhou Xiao-hong, Yu Li-lei. Image Segmentation Based on Watershed Algorithm[J]. Computer Simulation, 2009, 26(5): 255-258.
    [10]
    周莉莉, 姜枫. 图像分割方法综述研究[J]. 计算机应用研究, 2017, 34(7): 1921-1928.

    Zhou Li-li, Jiang Feng. Survey on Image Segmentation Methods[J]. Application Research of Computers, 2017, 34(7): 1921-1928.
    [11]
    寻言言, 薛河儒, 姜新华. 基于MATLAB的相机标定方法[J]. 内蒙古农业大学学报(自然科学版), 2014, 35(2): 164-168.

    Xun Yan-yan, Xue He-ru, Jiang Xin-hua. The Camera Calibration Method Based on MATLAB[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2014, 35(2): 164-168.
    [12]
    Bouchra B, Sebastien K, Nabil E A, et al. A Flexible Technique Based on Fundamental Matrix for Camera Self-calibration with Variable Intrinsic Parameters from Two Views[J]. Journal of Visual Communication and Image Representation, 2016, 39: 40-45.
    [13]
    Otsu N. A Threshold Selection Method from Gray-Level Histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 2007, 9(1): 62-66.
    [14]
    马逸东, 周顺勇. 基于连通性检测的图像椒盐噪声滤波算法[J]. 液晶与显示, 2020, 35(2): 167-172.

    Ma Yi-dong, Zhou Shun-yong. Salt and Pepper Noise Filtering Algorithm Based on Connectivity Detection[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(2): 167-172.
    [15]
    刘子铭. 加权方向自适应全变分去噪算法[J]. 电子技术与软件工程, 2019(23): 69-70.
    [16]
    权稳稳. 基于视觉的水下目标识别与定位技术研究[D]. 青岛: 山东大学, 2018.
    [17]
    于永军, 徐锦法, 张梁, 等. 惯导/双目视觉位姿估计算法研究[J]. 仪器仪表学报, 2014, 35(10): 2170-2176.

    Yu Yong-jun, Xu Jin-fa, Zhang Liang, et al. Research on SINS/Binocular Vision Integrated Position and Attitude Estimation Algorithm[J]. Chinese Journal of Scientific Instrument, 2014, 35(10): 2170-2176.
    [18]
    Scharstein D, Szeliski R. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms[J]. Kluwer Academic Publishers, 2002, 47: 1-3.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(204) PDF Downloads(232) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return