• 中国科技核心期刊
  • JST收录期刊
LIU Shi-cong, WANG Qiu-sheng, LOU Hao-ran. Effects of Charge Depth and Air Domain Size on Underwater Explosion[J]. Journal of Unmanned Undersea Systems, 2019, 27(6): 664-672. doi: 10.11993/j.issn.2096-3920.2019.06.010
Citation: LIU Shi-cong, WANG Qiu-sheng, LOU Hao-ran. Effects of Charge Depth and Air Domain Size on Underwater Explosion[J]. Journal of Unmanned Undersea Systems, 2019, 27(6): 664-672. doi: 10.11993/j.issn.2096-3920.2019.06.010

Effects of Charge Depth and Air Domain Size on Underwater Explosion

doi: 10.11993/j.issn.2096-3920.2019.06.010
  • Received Date: 2019-04-12
  • Rev Recd Date: 2019-05-16
  • Publish Date: 2019-12-31
  • In underwater explosion test, it is difficult to carry out research on the charge depth and the air domain size which affects the accuracy of numerical calculation. In this paper, based on the underwater explosion test of centrifuge, underwater explosion of spherical explosive under super-gravity field is simulated using two-dimensional and three-dimensional models, and the simulation results are compared with the test data to verify the rationality of the two models. Then, different charge depth and air domain size are added to the two models to analyze the effects of the two factors on simulation results of underwater explosion shock wave and bubble pulsation. The simulation results show that the greater the charge depth, the larger the shock wave peak values at the same distance from the center of the explosive, but the increase rate of the peak value with the charge depth is small; and the air domain size has little effect on numerical results of the underwater explosion bubble pulsation.

     

  • loading
  • [1]
    Snay H G. Hydrodynamics of Underwater Explosions[C]//Symposium on Naval Hydrodynamics 1st, Washiton D C, USA. 1956: 325-352.
    [2]
    Cole R H. Underwater Explosions[M]. New Jersey: Prin- ceton University Press, 1948.
    [3]
    Brett J M, Buckland M, Turner T, et al. An Experimental Facility for Imaging of Medium Scale Underwater Explosions DSTO-TR-1432[R]. Australian: Defence Science and Technology Organisation, 2003.
    [4]
    黄超, 汪斌, 姚熊亮, 等. 试验室尺度水下爆炸气泡试验方法[J]. 传感器与微系统, 2011, 30(12): 75-77, 81.

    Huang Chao, Wang Bin, Yao Xiong-liang, et al. Laboratory-scale Underwater Explosion Bubble Experiment Method[J]. Transducer and Microsystem Technologies, 2011, 30(12): 75-77, 81.
    [5]
    Benjamin T B, Ellis A T. The Collapse of Cavitation Bubbles and the Pressures Thereby Produced Against Solid Boundaries[J]. Philosophical Transactions of the Royal Society of London, 1966, 260(1110): 221-240.
    [6]
    Tomita Y, Shima A, Takahashi K. The Collapse of a Gas Bubble Attached to a Solid Wall by a Shock Wave and the Induced Impact Pressure[J]. American Society of Mechanical Engineers, 1983, 105(3): 341-347.
    [7]
    Zhang A M, Li S, Cui J, et al. Study on Splitting of a Toroidal Bubble Near a Rigid Boundary[J]. Physics of Fluids, 2015, 27(6): 062102.
    [8]
    张阿漫, 王超, 王诗平, 等.气泡与自由液面相互作用的试验研究[J]. 物理学报, 2012, 61(8): 1-13.

    Zhang A-man, Wang Chao, Wang Shi-ping, et al. Experimental Study of Interaction Between Bubble and Free Surface[J]. Acta Physica Sinica, 2012, 61(8): 1-13.
    [9]
    范一锴, 陈祖煜, 梁向前, 等. 砂中爆炸成坑的离心模型试验分析方法比较[J]. 岩石力学与工程学报, 2011, 30(S2): 4123-4128.

    Fan Yi-kai, Chen Zu-yu, Liang Xiang-qian, et al. Comp- arison of Three Methods for Geotechnical Centrifuge Model Tests of Explosion Cratering Sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S2): 4123-4128.
    [10]
    Holsapple K A, Schmidt R M. On the Scaling of Crater Dimensions 1. Explosive Processes[J]. Journal of Geophysical Research Atmospheres, 1980, 85(B12): 7247- 7256.
    [11]
    Hu J, Chen Z Y, Wang Q S, et al. Underwater Explosion in Centrifuge PartⅠ: Validation and Calibration of Scaling Law[J]. Science China Technological Sciences, 2017, 60 (11): 1638-1657.
    [12]
    Long Y, Zhou H Y, Liang X Q, et al. Underwater Explosion in Centrifuge Part II: Dynamic Responses of Defensive Steel Plate[J]. Science China Technological Sciences, 2017, 60(12): 1941-1957.
    [13]
    Wu J Y, Long Y, Zhong M S, et al. Centrifuge Experiment and Numerical Study on the Dynamic Response of Air-backed Plate to Underwater Explosion[J]. Journal of Vibroengineering, 2017, 19(7): 5231-5247.
    [14]
    Song G, Chen Z Y, Long Y, et al. Experiment and Numerical Investigation of the Centrifugal Model for Underwater Explosion Shock Wave and Bubble Pulsation[J], Ocean Engineering, 2017, 142(15): 523-531.
    [15]
    娄浩然, 胡晶, 梁向前, 等. 超重力场下球形炸药水下爆炸试验及数值模拟[J]. 工程爆破, 2017, 23(3): 15- 21.

    Lou Hao-ran, Hu Jing, Liang Xiang-qian, et al. Underwater Explosion Experiment and Numerical Simulation of Spherical Explosives Under Hypergravity Field[J]. Engineering Blasting, 2017, 23(3): 15-21.
    [16]
    王树乐, 陈高杰, 沈晓乐, 等. 基于并行计算的某战斗部中近场毁伤能力仿真研究[J]. 兵工学报, 2015, 36(S1): 298-302.

    Wang Shu-le, Chen Gao-jie, Shen Xiao-le, et al. A Numerical Study of Warhead Damage Based on Parallel Computing in Near-field[J]. Acta Armamentarh, 2015, 36(S1): 298-302.
    [17]
    徐豫新, 王树山, 李园. 水下爆炸数值仿真研究[J]. 弹箭与制导学报, 2009, 29(6): 95-97, 102.

    Xu Yu-xin, Wang Shu-shan, Li Yuan. Study on Numerical Simulation of The Underwater explosion[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(6): 95-97, 102.
    [18]
    张效慈. 水下爆炸试验相似准则[J]. 船舶力学, 2007, 11(1): 108-118.

    Zhang Xiao-ci. Similarity Criteria for Experiment of Underwater Explosion[J]. Journal of Ship Mechanics, 2007, 11(1): 108-118.
    [19]
    Century Dynamic Inc. AUTODYN Theory Manual Version 4.3[M]. USA: Century Dynamic Inc, 2005.
    [20]
    韩早, 王伯良. 混合炸药爆速的新方法[J]. 爆炸与冲击, 2014, 34(4): 421-426.

    Han Zao, Wang Bo-liang. A New Method for Predicting Detonation Velocity of Composite Explosive[J]. Explosion and Shock Waves, 2014, 34(4): 421-426.
    [21]
    Johansson C H, Persson P A. Density and Pressure in the Chapman-Jouguet Plane as Functions of Initial Density of Explosives[J]. Nature, 1996, 212(5067): 1230-1231.
    [22]
    Urtiew P A, Hayes B. Parametric Study of the Dynamic JWL-EOS for Detonation Products[J]. Combustion, Explosion, and Shock Waves. 1991, 27(4): 505-514.
    [23]
    Urtiew P A, Hayes B. Parametric Study of the Dynamic JWL EOS for Detonation Products[J]. Combustion Explosion and Shock Waves, 1991, 27(4): 504-514.
    [24]
    孙承纬, 卫玉章, 周之奎. 应用爆轰物理[M]. 北京: 国防工业出版社, 2000.
    [25]
    Urtiew P A, Hayes B. Empirical Estimate of Detonation Parameters in Condensed Explosives[J]. Journal of Energetic Materials, 1991, 9(4): 297-318.
    [26]
    Gel’fand B E, Takayama K. Similarity Criteria for Underwater Explosions[J]. Combustion Explosion & Shock Waves, 2004, 40(2): 214-218.
    [27]
    杨坤, 陈朗, 伍俊英, 等. 计算网格与人工粘性系数对炸药水中爆炸数值模拟计算的影响分析[J]. 兵工学报, 2014, 35(S2): 237-243.

    Yang Kun, Chen Lang, Wu Jun-ying, et al. The Effects of Computing Grid and Artificial Viscosity Coefficient on Underwater Explosion Numerical Simulation[J]. Acta Armamenth, 2014, 35(S2): 237-243.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(404) PDF Downloads(246) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return