• 中国科技核心期刊
  • JST收录期刊
HUANG Yu-long, ZHANG Yong-gang, ZHAO Yu-xin. Review of Autonomous Undersea Vehicle Navigation Methods[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 232-253. doi: 10.11993/j.issn.2096-3920.2019.03.002
Citation: HUANG Yu-long, ZHANG Yong-gang, ZHAO Yu-xin. Review of Autonomous Undersea Vehicle Navigation Methods[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 232-253. doi: 10.11993/j.issn.2096-3920.2019.03.002

Review of Autonomous Undersea Vehicle Navigation Methods

doi: 10.11993/j.issn.2096-3920.2019.03.002
  • Received Date: 2019-04-05
  • Rev Recd Date: 2019-05-10
  • Publish Date: 2019-06-30
  • The accuracy of underwater navigation is the guarantee for autonomous undersea vehicle(AUV) to carry out underwater search, detection, anti-submarine and other tasks. Most of the existing AUV navigation methods are based on the strap-down inertial navigation system(SINS), and supplemented by acoustic velocity measurement and positioning technology, geophysical navigation technology and cooperative navigation technology. In this paper, the latest research progresses of AUV underwater navigation technology are reviewed, the basic principles of various underwater navigation technologies for AUV are introduced, and the application conditions, advantages and disadvantages of these methods are pointed out. Moreover, the technical difficulties of AUV underwater navigation method are analyzed, and corresponding solutions are given. Finally, future development trend of AUV underwater navigation technology is prospected

     

  • loading
  • [1]
    程娜. 可持续发展视阈下中国海洋经济发展研究[D]. 长春: 吉林大学, 2013.
    [2]
    徐博, 白金磊, 郝燕玲, 等. 多AUV协同导航问题的研究现状与进展[J]. 自动化学报, 2015, 41(3): 445-461.

    Xu Bo, Bai Jin-lei, Hao Yan-ling, et al. The Research Status and Progress of Cooperative Navigation for Multiple AUVs [J]. Acta Automatica Sinica, 2015, 41(3): 445-461.
    [3]
    高钟毓. 惯性导航系统技术[M]. 北京: 清华大学出版社, 2012.
    [4]
    罗维. 多普勒计程仪的信号处理算法研究与系统软件设计[D]. 杭州: 杭州电子科技大学, 2014.
    [5]
    严浙平, 王璐. UUV水下定位方法的研究现状与进展[J].哈尔滨工程大学学报, 2017, 38(7): 989-1000.

    Yan Zhe-ping, Wang Lu. Research Status and Progress of UUV Underwater Localization[J]. Journal of Harbin Engineering University, 2017, 38(7): 989-1000.
    [6]
    Fallon M F, Papadopoulos G, Leonard J J. Cooperative AUV Navigation Using a Single Maneuvering Surface Craft[J]. The International Journal of Robotics Research, 2010, 29(12): 1461-1474.
    [7]
    Tal A, Klein I, Katz R. Inertial Navigation System/Doppler Velocity Log(INS/DVL) Fusion with Partial DVL Measurements[J]. Sensors, 2017, 17(2): 415-434.
    [8]
    陈建华, 朱海, 王超, 等. 水下SINS/DVL紧组合导航算法[J]. 海军工程大学学报, 2017, 29(2): 108-112.

    Cheng Jian-hua, Zhu Hai, Wang Chao, et al. Underwater SINS/DVL Tightly Integrated Navigation Algorithm[J]. Journal of Naval University of Engineering, 2017, 29(2): 108-112.
    [9]
    Eliav R, Klein I. INS/Partial DVL Measurements Fusion with Correlated Process and Measurement Noise[C]//The 5th International Electronic Conference on Sensors and Applications. Basel, Switzerland: MDPI, 2019, 4(1): 34.
    [10]
    Liu P J, Wang B, Deng Z H, et al. INS/DVL/PS Tightly Coupled Underwater Navigation Method With Limited DVL Measurements[J]. IEEE Sensors Journal, 2018, 18(7): 2994-3002.
    [11]
    Yao Y Q, Xu X S, Li Y, et al. A Hybrid IMM Based INS/DVL Integration Solution for Underwater Vehicles[J]. IEEE Transactions on Vehicular Technology(Early Access), 2019.
    [12]
    Miller P A. Farrell J A, Zhao Y Y, et al. Autonomous Underwater Vehicle Navigation[J]. IEEE Journal of Oceanic Engineering, 2010, 35: 663-678.
    [13]
    Sam W. Remotely Operated Vehicles of the World[M]. 4th ed. USA: Oilfield Publications Limited, 2000.
    [14]
    Jalving B, Gade K, Svartveit K, et al. DVL Velocity Aiding in the HUGIN1000 Integrated Inertial Navigation System[J]. Modelling, Identification and Control, 2004, 25(4): 223-235.
    [15]
    赵俊波, 葛锡云, 冯雪磊, 等. 水下SINS/DVL组合导航技术综述[J]. 水下无人系统学报, 2018, 26(1): 2-9.

    Zhao Jun-bo, Ge Xi-yu, Feng Xue-lei, et al. A Review of Underwater SINS/DVL Integrated Navigation Technology[J]. Journal of Unmanned Undersea Systems, 2018, 26 (1): 2-9.
    [16]
    Larsen M B. High Performance Doppler-inertial Navigation experimental Results[C]//Ocean 2000 MTS/IEEE Conference and Exhibition. RI, USA: IEEE, 2000.
    [17]
    徐晓苏, 潘永飞, 邹海军. 基于自适应滤波的SINS/ DVL组合导航系统[J]. 华中科技大学学报(自然科学版), 2015, 43(3): 95-99.

    Xu Xiao-su, Pan Yong-fei, Zou Hai-jun. SINS/DVL IntegratedNavigation System Based on Adaptive Filtering[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2015, 43(3): 95-99.
    [18]
    徐晓苏, 董亚, 童金武, 等. 基于5阶球面最简相径的改进型容积卡尔曼滤波在SINS/DVL组合导航中的应用[J]. 中国惯性技术学报, 2017, 25(3): 343-348.

    Xu Xiao-su, Dong Ya, Tong Jin-wu, et al. Improved Fifth-degree Spherical Simplex Sadial Cubature Kalman Filter in SINS/ DVL Integrated Navigation[J]. Journal of Chinese Inertial Technology, 2017, 25(3): 343-348.
    [19]
    Xu X, Li P, Liu J. A Fault-Tolerant Filtering Algorithm for SINS/DVL/MCP Integrated Navigation System[J]. Mathematical Problems in Engineering, 2015(4): 1-12.
    [20]
    Huang Y L, Zhang Y G, Li N, et al. A Novel Robust Student’s t-Based Kalman Filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1545-1554.
    [21]
    Hu Y, Jin Z, Qi S, et al. Estimation Fusion for Networked Systems with Multiple Asynchronous Sensors and Stochastic Packet Dropouts[J]. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2017, 354(1): 145-459.
    [22]
    Lin H L, Sun S L. Distributed Fusion Estimator for Multi-sensor Asynchronous Sampling Systems with Missing Measurements[J]. IET Signal Processing, 2016, 10(7): 724-731.
    [23]
    朱倚娴, 程向红, 周玲, 等. 组合导航系统中异步多传感器信息融合算法[J]. 东南大学学报, 2018, 48(2): 195- 200.

    Zhu Yi-xian, Cheng Xiang-hong, Zhou Ling, et al. Information Fusion Algorithm for Asynchronous Multi-sensors in Integrated Navigation Systems[J]. Journal of Southeast University(Natural Science Edition), 2018, 48(2): 195-200.
    [24]
    Li W L, Zhang L D, Sun F P, et al. Alignment Calibration of IMU and Doppler Sensors for Precision INS/DVL Integrated Navigation[J]. Optik, 2015, 126(23): 3872-3876.
    [25]
    Gong J, Liang J, Wang Y, et al. On-line Calibration Method of SINS/DVL Integrated Navigation System[C]//2018 25th Saint Petersburg International Conference on Integrated Navigation Systems(ICINS). Saint Petersburg, Russian Federation: IEEE, 2018: 1-4.
    [26]
    Liu J, Wang B, Deng Z. An Online Calibration Method of INS and Doppler Sensors[C]//2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). Islamabad, Pakistan: IEEE, 2019: 824-829.
    [27]
    Pan X, Wu Y. Underwater Doppler Navigation with Self-calibration[J]. The Journal of Navigation, 2016, 69(2): 295-312.
    [28]
    Troni G, Whitcomb L L. Advances in In Situ Alignment Calibration of Doppler and High/Low-end Attitude Sensors for Underwater Vehicle Navigation: Theory and Ex-perimental Evaluation[J]. Journal of Field Robotics, 2015, 32(5): 655-674.
    [29]
    Hegrenæs O, Berglund E. Doppler Water-track Aided Inertial Navigation for Autonomous Underwater Vehicle[C] //Proceedings of the IEEE Oceans Conference and Exhibition. Bremen, Germany: IEEE, 2009.
    [30]
    Zhu Y, Cheng X, Hu J, et al. A Novel Hybrid Approach to Deal with DVL Malfunctions for Underwater Integrated Navigation Systems[J]. Journal of Applied Sciences, 2017, 7(8): 759.
    [31]
    Martinez A, Hernandez L, Sahli H, et a1. Model-aided Navigation with Sea Current Estimation for an Autonomous Underwater Vehicle[J]. International Journal of Advanced Robotic Systems, 2015, 12(7): 103.
    [32]
    Hegrenæs O, Hallingstad O. Model-Aided INS With Sea Current Estimation for Robust Underwater Navigation[J]. IEEE Journal of Oceanic Engineering 2011, 36(2): 316-337.
    [33]
    Zhao L Y, Wang X J, Wang L, et al. A Pretreatment Method for the Velocity of DVL Based on the Motion Constraint for the Integrated SINS/DVL[J]. Applied Sciences, 2016, 6(3): 1-15.
    [34]
    范继伟, 沈学强, 杨成伟, 等. 小波故障检测在脉冲星组合导航中的应用[J], 兵工自动化, 2016, 35(5): 46-50.

    Fan Ji-wei, Shen Xue-qiang, Yang Cheng-wei, et al. Application Study on Using Wavelet Fault Detection in Integrated Navigtion System Based on XNAV[J]. Ordnance Industry Automation, 2016, 35(5): 46-50.
    [35]
    Wang R, Xiong Z, Liu J Y, et al. Chi-square and SPRT Combined Fault Detection for Multisensory Navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(3): 1352-1365.
    [36]
    肖昌荣, 蒋青吉, 李鹏. HiPAP100水下定位系统及应用[J]. 电子世界, 2014(12): 210-211.

    Xiao Cang-rong, Jiang Qing-ji, Li Peng. HiPAP100 Underwater Positioning System and Its Application[J]. Electronics World, 2014(12): 210-211.
    [37]
    Ixbule. USBL Postioning Systems[DB/OL]. (2019-05-22) [2019-05-22]. http://www.Ix-blue.com/products/.
    [38]
    陈维. GAPS超短基线声学水下定位技术及其在海洋调查中的应用[J]. 大众科技, 2014, 16(5): 15-17.

    Chen Wei. GAPS Ultra-short Baseline Underwater Acoustic Positioning Technology and Its Application in Marine Investigation[J]. Popular Science & Technology, 2014, 16 (5): 15-17.
    [39]
    Neasham J A, Goodfellow G, Sharphouse R. Development of the “SeaTrac” Miniature Acoustic Modem and USBL Positioning Units for Subsea Robotics and Diver Applications[C]//OCEANS2015. Genova: IEEE, 2015: 1-8.
    [40]
    Chen H H, Wang C C. Accuracy Assessment of GPS/ Acoustic Positioning Using a Seafloor Acoustic Tansponder system[J]. Ocean Engineering, 2011, 38(13): 1472-1479.
    [41]
    郑翠娥, 张居成, 李昭. 深水高精度水下综合定位系统研制科技报告[J]. 科技创新导报, 2016, 13(5): 164-164.

    Zheng Cui-e, Zhang Ju-cheng, Li Zhao. Scientific Report of Deep Sea High Precision Underwater LUSBL Positioning System Project[J]. Science and Technology Innovation Herald, 2016, 13(5): 164-164.
    [42]
    江苏中海达海洋信息技术有限公司. Itrack-USBL系列超短基线定位系统[EB/OL](2019-05-22)[2019-05-22]. http://www.zhdgps.com/Product/.
    [43]
    杨晓涵. 基于最小二乘法的水下多径环境下测距和定位的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
    [44]
    王燕, 梁国龙. 一种适用于长基线水声定位系统的声线修正方法[J]. 哈尔滨工程大学学报, 2002, 23(5): 32-34.

    Wang Yan. Liang Guo-long. Correction of Sound Velocity in Long Baseline Acoustic Positioning System[J]. Journal of Harbin Engineering University, 2002, 23(5): 32-34.
    [45]
    李建. 中国声学学会2018年全国声学大会论文集B水声物理: 超短基线定位中的快速声线跟踪算法研究[C]//2018年全国声学大会. 北京: 中国声学学会, 2018.
    [46]
    Li J, Gu Q, Chen Y, et al. A Combined Ray Tracing Method for Improving the Precision of the USBL Positioning System in Smart Ocean[J]. Sensors, 2018, 18(10): 3586.
    [47]
    张同伟, 刘烨瑶, 唐嘉陵, 等. 大深度载人潜水器之超短基线定位系统: 海上试验及载人深潜应用[J/OL]. 应用基础与工程科学学报, 2019: 1-14. [2019-06-11]. http://kns.cnki.net/kcms/detail/11.3242.TB.20190121.2148. 004.html.

    Zhang Tong-wei, Liu Ye-yao, Tang Jia-ling, et al. Ultra- Short Baseline for Manned Deep-Sea Submersibles: Sea Trial and its Application[J/OL]. Journal of Basic Science and Engineering, 2019: 1-14. [2019-06-11]. http://kns. cn- ki.net/kcms/detail/11.3242.TB.20190121.2148.004.html.
    [48]
    李昭, 郑翠娥, 孙大军. 超短基线声传感器安装偏差标定测线规划[J]. 系统工程与电子技术, 2016, 38(5): 1010-1016.

    Li Zhao, Zheng Cui-e, Sun Da-jun. Track Design for the Acoustic Sensor Installation Alignment Calibration in Ultra-short Baseline Positioning System[J]. Systems Engineering and Electronics, 2016, 38(5): 1010-1016.
    [49]
    Tong J W, Xu X S, Zhang T, et al. Study on Installation Error Analysis and Calibration of Acoustic Transceiver Array Based on SINS/USBL Integrated System[J]. IEEE Access, 2018(6): 66923-66939,
    [50]
    徐博, 郝芮, 王超, 等. 基于倒置声学基阵的INS/ USBL组合导航算法研究[J]. 海洋技术学报, 2017, 36 (5): 46-54.

    Xu Bo, Hao Rui, Wang Chao, et al. Research on INS/ USBL Integrated Navigation Algorithm Based on the Inverted Acoustic Array[J]. Journal of Ocean Technology, 2017, 36(5): 46-54.
    [51]
    张亚文, 莫明岗, 马小艳, 等. 一种基于相对测量信息的SINS/USBL组合导航算法[J]. 导航定位与授时, 2016, 3(2): 7-13.

    Zhang Ya-wen, Mo Ming-gang, Ma Xiao-yan, et al. An Algorithm Used in Underwater SINS/USBL Integrated Navigation[J]. Navigation Positioning and Timing, 2016, 3(2): 7-13.
    [52]
    Wang B, Liang J, Wang Y G, et al. SINS/USBL Integrated Navigation Fault-tolerant Method with Chi-square Test[C] //2018 25th Saint Petersburg International Conference on Integrated Navigation Systems(ICINS), Margarita Grishina: St. Petersburg, 2018: 1-4.
    [53]
    Fan S, Liu C, Li B, et al. AUV Docking Based on USBL Navigation and Vision Guidance[J]. Journal of Marine Science and Technology, 2018: 1437-8213.
    [54]
    黄健, 严胜刚. 利用数据融合改进超短基线系统定位精度[J]. 测绘通报, 2018(7): 1-4.

    Huang Jian, Yan Sheng-gang. Improvement on the Positioning Accuracy of Ultra-short Baseline System Based on Data Fusion[J]. Bulletin of Surveying and Mapping, 2018(7): 1-4.
    [55]
    梁国龙, 张毅锋, 付进. 利用夹角几何关系的超短基线定位方法[J]. 哈尔滨工程大学学报, 2019, 40(8): 1-6.

    Liang Guo-long, Zhang Yi-feng, Fu Jin. Angle-based Underwater Source Localization for USBL[J]. Journal of Harbin Engineering University, 2019, 40(8): 1-6.
    [56]
    Xu Y L, Liu W Q, Ding X, et al. USBL Positioning System Based Adaptive Kalman Filter in AUV[C]//2018 OCEANS- MTS/IEEE Kobe Techno-Oceans(OTO). Kobe: IEEE, 2018.
    [57]
    李志林, 朱庆. 数字高程模型[M]. 武汉: 武汉测绘科技大学出版社, 2000.
    [58]
    邹炜, 孙玉臣. 水下地形匹配辅助导航技术研究[J]. 舰船电子工程, 2017, 37(8): 5-10.

    Zou Wei, Sun Yu-chen. Research on Underwater Terrain Matching Aided Navigation Technology[J]. Ship Electronic Engineering, 2017, 37(8): 5-10.
    [59]
    张静远, 谌剑, 李恒, 等. 水下地形辅助导航技术的研究与应用进展[J]. 国防科技大学学报, 2015, 37(3): 128- 135.

    Zhang Jing-yuan, Chen Jian, Li Heng, et al. Research and Application Progress of Underwater Terrain Aided Navigation Technology[J]. Journal of National Defense University of Science and Technology, 2015, 37(3): 128-135.
    [60]
    Bar-Itzhack I Y, Harman R R. In-space Calibration of a Gyro Quadruplet[R]. AIAA-2009-4152, 2009.
    [61]
    郑彤, 边少锋, 王志刚. 基于ICCP匹配算法的海底地形匹配辅助导航[J]. 海洋测绘, 2008, 28(2): 21-23, 28.

    Zheng Tong, Bian Shao-feng, Wang Zhi-gang. Seabed Terrain Matching Aided Navigation Based on ICCP Matching Algorithm[J]. Marine Surveying and Mapping, 2008, 28(2): 21-23, 28.
    [62]
    王汝鹏, 李晔, 马腾, 等. AUV地形匹配导航快速收敛滤波[J]. 华中科技大学学报(自然科学版), 2018, 46(7): 94-97.

    Wang Ru-peng, Li Ye, Ma Teng, et al. Fast Convergence Filtering for AUV Terrain Matching Navigation[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(7): 94-97.
    [63]
    张立华, 刘现鹏, 贾帅东, 等. 一种线面组合的水下地形匹配算法[J]. 测绘学报, 2018, 47(10): 1406-1414.

    Zhang Li-hua, Liu Xian-peng, Jia Shuai-dong, et al. An Underwater Terrain Matching Algorithm Based on Line-surface Combination[J]. Journal of Surveying and Map- ing, 2018, 47(10): 1406-1414.
    [64]
    刘现鹏, 张立华, 贾帅东, 等. 基于TIN模型的水下地形匹配定位算法[J]. 海洋测绘, 2018, 38(2): 66-70.

    Liu Xian-peng, Zhang Li-hua, Jia Shuai-dong, et al. Un-derwater Terrain Matching Location Algorithm Based on TIN Model[J]. Marine Surveying and Mapping, 2018, 38 (2): 66-70.
    [65]
    徐遵义, 晏磊, 宁书年, 等. 基于Hausdorff距离的海底地形匹配算法仿真研究[J]. 算机工程, 2007, 33(9): 7-9, 21.

    Xu Zun-yi, Yan Lei, Ning Shu-nian, et al. Simulation of Seabed Terrain Matching Algorithms Based on Hausdorff Distance[J]. Computer Engineering, 2007, 33(9): 7-9, 21.
    [66]
    谌剑, 张静远, 严平. 一种基于粒子滤波的水下地形匹配算法研究[J]. 海军工程大学学报, 2008, 20(6): 107-112.

    Chen Jian, Zhang Jing-yuan, Yan Ping. Research on Underwater Terrain Matching Algorithm Based on Particle Filter[J]. Journal of Naval Engineering University, 2008, 20(6): 107-112.
    [67]
    张晓峻. 水下机器人地磁辅助导航算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
    [68]
    Chang L. Progress, Contribution and Challenges of Earth- Magnetism Navigation[J]. Automation, Control and Intelligent Systems, 2017, 5(1): 8.
    [69]
    Wang L, Yu L, Qiao N, et al. Analysis and Simulation of Geomagnetic Map Suitability Based on Vague Set[J]. The Journal of Navigation, 2016, 69(5): 1114-1124.
    [70]
    Han D, Zhao C, Dai T. Geomagnetic Matching Algorithm Based on Closest Contour Point and Relative Position ConStraint[C]//2017 36th Chinese Control Conference (CCC). Dalian, China: IEEE, 2017: 5932-5936.
    [71]
    Bavdekar V A, Deshpande A P, Patwardhan S C. Identification of Process and Measurement Noise Covariance for State and Parameter Estimation Using Extended Kalman Filter[J]. Journal of Process control, 2011, 21(4): 585-601.
    [72]
    刘睿, 董汉成, 王常虹. 基于模糊自适应强跟踪滤波的惯性/地磁组合导航方法[J]. 中国惯性技术学报, 2011, 19(3): 329-334.

    Liu Rui, Dong Han-cheng, Wang Chang-hong. Inertial/ Geomagnetic Navigation System Based on Fuzzy Adaptive Strong Tracking Kalman Filter[J]. Journal of Chinese Inertial Technology, 2011, 19(3): 329-334.
    [73]
    刘岳峰, 郑培晨. 一种基于贝叶斯估计的地磁辅助惯性导航算法[J]. 北京大学学报(自然科学版), 2017, 53(5): 873- 880.

    Liu Yue-feng, Zheng Pei-chen. A Bayesian Estimation- Based Algorithm for GeomagneticAided Inertial Navigation[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(5): 873-880.
    [74]
    Ånonsen K B, Hagen O K. An Analysis of Real-time Terrain Aided Navigation Results from a HUGIN AUV[C]// Oceans 2010 MTS/IEEE Seattle. Washington, USA: IEEE, 2010: 1-9.
    [75]
    朱占龙. 惯性/地磁匹配组合导航相关技术研究[D]. 南京: 东南大学, 2015.
    [76]
    Tao W, Chunhui T, Jinhui Z, et al. Correction of Tri-axial Magnetometer Interference Caused by an Autonomous Underwater Vehicle Near-bottom Platform[J]. Ocean Engineering, 2018, 160: 68-77.
    [77]
    Thébault E, Finlay C C, Alken P, et al. Evaluation of Candidate Geomagnetic Field Models for IGRF-12[J]. Earth, Planets and Space, 2015, 67(1): 112.
    [78]
    Maus S, Macmillan S, McLean S, et al. The US/UK World Magnetic Model for 2010-2015[EB/OL].(2015-04-29) [2019-04-05]. http://nora.nerc.ac.uk/id/eprint/510709.
    [79]
    Chen Z, Zhang Q, Pan M, et al. A New Geomagnetic Matching Navigation Method Based on Multidimensional Vector Elements of Earth’s Magnetic Field[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8): 1289-1293.
    [80]
    Wang H B, Xu X S, Zhang T. Multipath Parallel ICCP Underwater Terrain Matching Algorithm Based on Multi-beam Bathymetric Data[J]. IEEE Access, 2018, 6: 48708- 48715.
    [81]
    Xiao J, Duan X, Qi X. An Adaptive M-ICCP Geomagnetic Matching Algorithm[J]. The Journal of Navigation, 2018, 71(3): 649-663.
    [82]
    Li H, Liu M, Zhang F. Geomagnetic Navigation for an AUV Based on Multi-objective Simulating Annealing Algorithm[C]//2017 IEEE International Conference on Robotics and Biomimetics(ROBIO). Macau, China: IEEE, 2017: 2027-2031.
    [83]
    Li H, Liu M Y, Zhang F H. Geomagnetic Navigation of Autonomous Underwater Vehicle Based on Multiobjective Evolutionary Algorithm[EB/OL]. (2017-07-12) [2019-05-05]. https://www.research-gate.net/publication/.3184-64017_Geomagnetic_Navigation_of_Autonomous_Underwater_Vehicle_Based_on_Multi-objective_Evolutionary_ Algorithm.
    [84]
    Dai T, Miao L, Shao H. A Robust Underwater Navigation Method Fusing Data of Gravity Anomaly and Magnetic Anomaly[J]. International Journal of Systems Science, 2019: 1-15.
    [85]
    王鹏. 水下地磁导航适配性研究[D]. 长沙: 国防科学技术大学, 2014.
    [86]
    Ma Y, Zhao Y, Wu L, et al. Navigability Analysis of Magnetic Map with Projecting Pursuit-based Selection Method by Using Firefly Algorithm[J]. Neurocomputing, 2015, 159: 288-297.
    [87]
    Xiao J, Duan X, Qi X, et al. Research on Suitable Matching Area in Geomagnetic Navigation[C]//2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics(AMEII 2016). Research Institute of Management Science and Industrial Engineering, Hangzhou, China: Atlantis Press, 2016.
    [88]
    Wang Y , Wu L , Chai H , et al. Technology of Gravity Aided Inertial Navigation System and Its Trial in South China Sea[J]. IET Radar, Sonar & Navigation, 2016, 10(5): 862-869.
    [89]
    王虎彪, 王勇, 陆洋, 等. 用卫星测高和船测重力资料联合反演海洋重力异常[J]. 大地测量与地球动力学, 2005, 25(1): 81-86.

    Wang Hu-biao, Wang Yong, Lu Yang, et al. Inversion of Marine Gravity Anomalies by Combinating Multi Altimeter Data and Shipborne Gravimetric Data[J]. Geodesy and Geodynamics, 2005, 25(1): 81-86.
    [90]
    付梦印, 刘飞, 袁书明, 等. 水下惯性/重力匹配自主导航综述[J]. 水下无人系统学报, 2017, 25(2): 35-47.

    Fu Meng-yin, Liu Fei, Yuan Shu-ming, et al. Review of Undersea Autonomous Inertial-Gravity Matching Navigation[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 35-47.
    [91]
    刘少明, 孙少安, 卢红艳, 等. LCR重力仪与CG-5重力仪的长基线混合标定[J]. 大地测量与地球动力学, 2012, 32(1): 56-59.

    Liu Shao-ming, Sun Shao-an, Lu Hong-yan, et al. Mixed Calibration on Long Baselinefor LCR and CG-5 Gravimeters[J]. Geodesy and Geodynamics, 2012, 32(1): 56-59.
    [92]
    李海兵, 蔡体菁. 全张量重力梯度仪测量方程及误差分析[J]. 东南大学学报(自然科学版), 2010, 40(3): 517-521.

    Li Hai-bing, Cai Ti-jing. Measurement Equations and Er-ror Analysis of Full Tensor Gravity Gradiometer[J]. Journal of Southeast University(Natural Science Edition), 2010, 40(3): 517-521.
    [93]
    张子山. GDP-1型重力仪船载试验介绍[C]//重力测量技术——2014年惯性技术发展动态发展方向研讨会. 重庆: 中国惯性技术学会, 2014.
    [94]
    涂海波, 何建刚, 刘雷钧, 等. CHZ-Ⅱ海洋重力仪重力敏感结构的性能测试与分析[J]. 大地测量与地球动力学, 2015, 35(4): 711-714.

    Tu Hai-bo, He Jian-gang, Liu Lei-jun, et al. Performance Characteristics for the g-Sentitive Elastic Structure of CHZ-Ⅱ Sea Gravimeter[J]. Geodesy and Geodynamics, 2015, 35(4): 711-714.
    [95]
    Zhao L, Gao N, Huang B, et al. A Novel Terrain-aided Navigation Algorithm Combined with the TERCOM Algorithm and Particle Filter[J]. IEEE Sensors Journal, 2015, 15(2): 1124-1131.
    [96]
    Lee B, Kim C, Park R. An Orientation Reliability Matrix for the Iterative Closest Point Algorithm[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 22(10): 1205-1208.
    [97]
    Liu M, Wang B, Deng Z, et al. Improved ICCP Algorithm and Its Application in Gravity Matching Aided Inertial Navigation System[C]//In Proc. 33rd China. Control Conf., Jul. Xuzhou, China: IEEE, 2014: 562-567.
    [98]
    白文平, 王志刚. ICCP重力匹配辅助导航算法研究及改进[J]. 计算机仿真, 2013, 30(6): 9-15.

    Bai Wen-ping, Wang Zhi-gang. Researching and Improving of ICCP Algorithm for Gravity Aided Inertial Navigation[J]. Computer Simulation, 2013, 30(6): 9-15.
    [99]
    Dai Z, Kang C. Geomagnetic Field Aided Inertial Navigation Using the SITAN Algorithm[C]//2014 2nd International Conference on Systems and Informatics(ICSAI). Shanghai, China: IEEE, 2014.
    [100]
    Han Y, Wang B, Deng Z, et al. An Improved TERCOM Based Algorithm for Gravity Aided Navigation[J]. IEEE Sensors Journal, 2016, 16(8): 2537-2544.
    [101]
    Yuan G, Zhang H, Yuan K, et al. A Combinational Aided Navigation Algorithm based on Terrain Variance Entropy and ICCP[C]//In Proc. 5th Int. Joint Conf. Comput. Sci. Optim., Cambridge, MA: IEEE, 2012, 835-838.
    [102]
    Sanguino T D J M, Gomez F P. Toward Simple Strategy for Optimal Tracking and Localization of Robots With Adaptive Particle Filtering[J]. IEEE/ASME Transactions on Me- chatronics, 2016, 21(6): 1-1.
    [103]
    Wang B, Li Y, Deng Z, et. A particle Filter-based Matching Algorithm with Gravity Sample Vector for Underwater Gravity Aided Navigation[J]. IEEE/ASME Trans. Mechatronics, 2016, 21(3): 1399-1408.
    [104]
    Wu L , Wang H , Chai H , et al. Research on the Relative Positions-Constrained Pattern Matching Method for Underwater Gravity-aided Inertial Navigation[J]. Journal of Navigation, 2015, 68(5): 937-950.
    [105]
    Han Y R, Wang B, Deng Z H, et al. Point Mass Filter Based Matching Algorithm in Gravity Aided Underwater Navigation[J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 152-159.
    [106]
    Han Y, Wang B, Deng Z, et al. A Combined Matching Algorithm for Underwater Gravity Aided Navigation[J]. IEEE/ASME Transactions on Mechatronics, 2017, 23(1): 233-241.
    [107]
    Wang H, Wang Y, Fang J, et al. Simulation Research on Aminimum Root-mean-square Error Rotation Fitting Algorithm for Gravity Matching Navigation[J]. Sci. China Earth Sci., 2012, 55(1): 90-97.
    [108]
    Paull L, Saeedi S, Seto M, et al. AUV Navigation and Localization: A Review[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1): 131-149.
    [109]
    Kalwa J. Final Results of the European Project GREX: Coordination and Control of Cooperating Marine Robots[J]. IFAC Proceedings Volumes, 2010, 43(16): 181-186.
    [110]
    Willcox S, Goldberg D, Vaganay J, et al. Multi-vehicle Cooperative Navigation and Autonomy with the Bluefin CADRE System[C]//Proceedings of International Federation of Automatic Control(IFAC) Conference. Lisbon, IEEE, 2006: 20-22.
    [111]
    Abreu P, Bayat M, Botelho J, et al. Cooperative Control and Navigation in the Scope of the EC CADDY Project [C]//Oceans 2015. Genova: IEEE, 2015: 1-5.
    [112]
    张少伟, 俞建成, 张艾群, 等. 多水下机器人自主海洋特征场跟踪研究[J]. 科学通报, 2013, 58(z2): 67-74.

    Zhang Shao-wei, Yu Jian-cheng, Zhang Ai-qun, et al. Tracking Strategy Analysis with Multi Underwater Vehicles for Ocean Feature[J]. Chinese Science Bulletin, 2013, 58(z2): 67-74.
    [113]
    牟春晖, 边信黔, 王宏健, 等. 具有通信约束的多 UUV 协调路径跟踪控制[J]. 鱼雷技术, 2011, 19(3): 195-200.

    Mou Chun-hui, Bian Xin-qian, Wang Hong-jian, et al. Coordinated Path Tracking Control of Multi-UUV with Communication Constraint[J]. Torpedo Technology, 2011, 19(3): 195-200.
    [114]
    Sun C, Zhang Y, Wang G, et al. A Maximum Correntropy Divided Difference Filter for Cooperative Localization[J]. IEEE Access, 2018, 6: 41720-41727.
    [115]
    Xing W, Zhao Y, Karimi H R. Convergence Analysis on Multi-AUV Systems with Leader-follower Architecture[J]. IEEE Access, 2017, 5: 853-868.
    [116]
    Huang Y, Zhang Y, Xu B, et al. A New Outlier-robust Student’s t Based Gaussian Approximate Filter for Cooperative Localization[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(5): 2380-2386.
    [117]
    刘明雍, 张加全, 张立川. 洋流影响下基于运动矢径的AUV协同定位方法[J]. 控制与决策, 2011, 26(11): 1632-1636.

    Liu Ming-yong, Zhang Jia-quan, Zhang Li-chuan. AUV Cooperative Localization Method Based on Motion Radius Vector in the Presence of Unknown Currents[J]. Control and Decision, 2011, 26(11): 1632-1636.
    [118]
    刘明雍. 水下航行器协同导航技术[M]. 北京: 国防工业出版社, 2014.
    [119]
    Arrichiello F, Antonelli G, Aguiar A P, et al. Observability Metric for the Relative Localization of AUVs Based on Range and Depth Measurements: Theory and Experiments[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, California, USA: IEEE, 2011: 3166-3171.
    [120]
    房新鹏, 严卫生. 双领航多自主水下航行器移动长基线定位最优队形研究[J]. 兵工学报, 2012, 33(8): 1020-1024.

    Fang Xin-peng, Yan Wei-sheng. Formation Optimization for Cooperative Localization Based on Moving Long Baseline with Two Leader AUVs[J]. Acta Armamentarii, 2012, 33(8): 1020-1024.
    [121]
    Tan Y T, Gao R, Chitre M. Cooperative Path Planning for Range-only Localization Using a Single Moving Beacon[J]. IEEE Journal of Oceanic Engineering, 2014, 39(2): 371-385.
    [122]
    Howard A, Matark M J, Sukhatme G S. Localization for Mobile Robot Teams Using Maximum Likelihood Estimation[C]//2002 IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, Switzerland: IEEE, 2002: 434-439.
    [123]
    Trawny N, Roumeliotis S I, Giannakis G B. Cooperative Multi-robot Localization Under Communication Constraints[C]//2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 4394- 4400.
    [124]
    Nerurkar E D, Roumeliotis S I, Martinelli A. Distributed Maximum a Posteriori Estimation for Multi-robot Cooperative Localization[C]//2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 1402-1409.
    [125]
    Taylor C J, Spletzer J. A Bounded UncertaintyApproach to Cooperative Localization Using Relative Bearing Constraints[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA, USA: IEEE, 2007: 2500-2506.
    [126]
    Eustice R M, Whitcomb L L, Singh H, et al. Experimen- tal Results in Synchronous-clock One-way-travel-time Acoustic Navigation for Autonomous Underwater Vehicles[C]//2007 IEEE International Conference on Robotics and Automation. Roma, Italy: IEEE, 2007: 4257- 4264.
    [127]
    Huang Y, Zhang Y, Xu B, et al. A New Adaptive Extended Kalman Filter for Cooperative Localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 353-368.
    [128]
    穆华. 多运动平台协同导航的分散式算法研究[D]. 长沙: 国防科学技术大学, 2010.
    [129]
    Mu H, Bailey T, Thompson P, et al. Decentralised Solutions to the Cooperative Multi-platform Navigation Problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1433-1449.
    [130]
    Webster S E, Walls J M, Whitcomb L L, et al. Decentra- lized Extended Information Filter for Single-beacon Cooperative Acoustic Navigation: Theory and Experi-ments[J]. IEEE Transactions on Robotics, 2013, 29(4): 957-974.
    [131]
    刘明雍, 沈俊元, 张加全, 等. 一种基于无迹卡尔曼滤波的 UUV 协同定位方法[J]. 鱼雷技术, 2011, 19(3): 205-208.

    Liu Ming-yong, Shen Jun-yuan, Zhang Jia-quan, et al. A Cooperative Localization Method of UUV Based on Unscented Kalman Filter[J]. Torpedo Technology, 2011, 19(3): 205-208.
    [132]
    Peasgood M. Cooperative Navigation for Teams of Mobile Robots[D]. Waterloo, Canada: The University of Waterloo, 2007.
    [133]
    Maczka D K, Gadre A S, Stilwell D J. Implementation of a Cooperative Navigation Algorithm on a Platoon of Autonomous Underwater Vehicles[C]//2007 Oceans. Aberdeen, Scotland: IEEE, 2007: 1-6.
    [134]
    Fallon M F, Papadopoulos G, Leonard J J. A Measurement Distribution Framework for Cooperative Navigation Using Multiple AUVs[C]//2010 IEEE International Conference on Robotics and Automation. Anchorage, Alaska, USA: IEEE, 2010: 4256-4263.
    [135]
    Qi Y, Wang B, Wang S, et al. Cooperative Navigation for Multiple Autonomous Underwater Vehicles with Time Delayed Measurements[C]//2016 IEEE Chinese Guidance, Navigation and Control Conference(CGNCC). Nanjing, China: IEEE, 2016: 295-299.
    [136]
    Xiao G, Wang B, Deng Z, et al. An Acoustic Communication Time Delays Compensation Approach for Master-slave AUV Cooperative Navigation[J]. IEEE Sensors Journal, 2017, 17(2): 504-513.
    [137]
    Vaganay J, Baccou P, Jouvencel B. Homing by Acoustic Ranging to a Single Beacon[C]//Oceans 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings(Cat. No.00CH37158). Providence, RI, USA: IEEE, 2000: 1457-1462.
    [138]
    Hollinger G A, Pereira A, Ortenzi V, et al. Towards Improved Prediction of Ocean Processes Using Statistical Machine Learning[J]. Inorganic Materials, 2013, 34(2): 109-113.
    [139]
    Shchepetkin A F, McWilliams J C. The Regional Oceanic Modeling System(ROMS): a Split-explicit, Freesurface, Topography-following-coordinate Oceanic Model[J]. Ocean Modelling, 2005, 9(4): 347-404.
    [140]
    Li Q, Naqvi S M, Neasham J, et al. Robust Cooperative Navigation for AUVs Using the Student’s T Distribution [C]//2017 Sensor Signal Processing for Defence Conference(SSPD). Edinburgh, UK: IEEE, 2017: 1-5.
    [141]
    Harris Z J, Whitcomb L L. Preliminary Study of Cooperative Navigation of Underwater Vehicles Without a DVL Utilizing Range and Range-rate Observations[C]//2016 IEEE International Conference on Robotics and Automation(ICRA). Stockholm, Sweden: IEEE, 2016: 2618-2624.
    [142]
    Harris Z J, Whitcomb L L. Preliminary Evaluation of Cooperative Navigation of Underwater Vehicles without a DVL Utilizing a Dynamic Process Model[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, Australia: IEEE, 2018: 1-9.
    [143]
    Harris Z J, Whitcomb L L. Preliminary Feasibility Study of Cooperative Navigation of Underwater Vehicles with Range and Range-rate Observations[C]//Oceans 2015-MTS/IEEE. Washington: IEEE, 2015: 1-6.
    [144]
    Harris Z J, Whitcomb L L. Preliminary Simulation Study of Combined Control and Cooperative Navigation for Underwater Vehicles[C]//Oceans 2018 MTS/IEEE. Charleston: IEEE, 2018: 1-5.
    [145]
    Yan Z, Wang L, Wang T, et al. Polar Cooperative Naviga-tion Algorithm for Multi-unmanned Underwater Vehicles Considering Communication Delays[J]. Sensors, 2018, 18(4): 1044.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1613) PDF Downloads(1668) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return