• 中国科技核心期刊
  • JST收录期刊
FAN Zeng, WANG Yang-wei, LIU Kai, ZHAO Dong-biao. Modeling and Experimental Research of Integrating Propulsion Mechanism of Pectoral Fin’s Fluctuation and Swing for the Biomimetic Robotic Fish[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 166-173. doi: 10.11993/j.issn.2096-3920.2019.02.007
Citation: FAN Zeng, WANG Yang-wei, LIU Kai, ZHAO Dong-biao. Modeling and Experimental Research of Integrating Propulsion Mechanism of Pectoral Fin’s Fluctuation and Swing for the Biomimetic Robotic Fish[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 166-173. doi: 10.11993/j.issn.2096-3920.2019.02.007

Modeling and Experimental Research of Integrating Propulsion Mechanism of Pectoral Fin’s Fluctuation and Swing for the Biomimetic Robotic Fish

doi: 10.11993/j.issn.2096-3920.2019.02.007
  • Received Date: 2018-06-28
  • Rev Recd Date: 2018-10-08
  • Publish Date: 2019-04-30
  • For developing a high-performance biomimetic underwater thruster, this paper takes stingray as a biomimetic prototype and learns from the fish’s swing-mode propulsion mechanism to propose a new type of propulsion mode that integrates pectoral fin’s fluctuation and swing propulsion mechanisms. The mechanical structure and control system of the biomimetic robotic fish are designed, and a dynamic model integrating the pectoral fin’s fluctuation and swing propulsion mechanisms is built. Based on the theoretical analysis, the relations of the average propulsive force and swimming speed with the motion parameters such as area of swinging pectoral fin, the swing frequency, and amplitude are studied experimentally. The results show that the theoretical calculations and the experimental results have the same tendency; the average propulsive force and the average swimming speed of the robotic fish increase first and then decrease with the increase of the swing pectoral fin area, and they increase linearly with the swing frequency and amplitude increasing—the maximum average propulsive force reaches to 2.8 N, and the maximum swimming speed reaches to 121 mm/s. The research may provide a reference for improving swimming performance of the robotic fish.

     

  • loading
  • [1]
    Fish F E. Advantages of Natural Propulsive Systems[J]. Marine Technology Society Journal, 2013, 47(5): 37-44.
    [2]
    Sfakiotakis M, Lane D M, Davies J B C. Review of Fish Swimming Modes for Aquatic Locomotion[J]. IEEE Journal of Oceanic Engineering, 1999, 24(2): 237-252.
    [3]
    Tytell E D. Do Trout Swim Better Than Eels? Challenges for Estimating Performance Based on the Wake of Self-propelled Bodies[J]. Experiments in Fluids, 2007, 43(5): 701-712.
    [4]
    Suzuki H, Kato N, Suzumori K. Load Characteristics of Mechanical Pectoral Fin[J]. Experiments in Fluids, 2008, 44(5): 759-771.
    [5]
    章永华, 何建慧. 仿生蓝点魟的结构设计及建模[J]. 机械科学与技术, 2012, 31(4): 627-632.

    Zhang Yong-hua, He Jian-hui. Mechanism Design and Modeling of a Biomimetic Bluespotted Ray[J]. Mechanical Science and Technology, 2012, 31(4): 627-632.
    [6]
    Triantafyllou M S, Triantafyllou G S. An Efficient Swimming Machine[J]. Scientific American, 1995, 272(3): 64-70.
    [7]
    梁建宏, 邹丹, 王松, 等. SPC-II机器鱼平台及其自主航行实验[J]. 北京航空航天大学学报, 2005, 31(7): 709-713.

    Liang Jian-hong, Zou Dan, Wang Song, et al. Trial Voyage of SPC-II Fish Robot[J]. Journal of Bejing University of Aeronautics and Astronautics, 2005, 31(7): 709-713.
    [8]
    Liu J, Hu H. Biological Inspiration: From Carangiform Fish to Multi-Joint Robotic Fish[J]. Journal of Bionic Engineering, 2010, 7(1): 35-48.
    [9]
    Asadnia M, Kottapalli A G, Haghighi R, et al. MEMS Sensors for Assessing Flow-related Control of an Underwater Biomimetic Robotic Stingray[J]. Bioinspiration & Biomimetics, 2015, 10(3): 036008.
    [10]
    Epstein M, Colgate J E, Maciver M A. Generating Thrust with a Biologically-Inspired Robotic Ribbon Fin[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2007: 2412-2417.
    [11]
    章永华. 柔性仿生波动鳍推进理论与实验研究[D]. 合肥: 中国科学技术大学, 2008.
    [12]
    王扬威. 仿生墨鱼机器人及其关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
    [13]
    Behbahani S B, Wang J, Tan X. A Dynamic Model for Robotic Fish with Flexible Pectoral Fins[C]//2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong, NSW, Australia: IEEE, 2013, 8212: 1552-1557.
    [14]
    Wei Q P, Wang S, Dong X, Tan M, et al.Design and Kinetic Analysis of a Biomimetic Underwater Vehicle with Two Undulating Long-fins[J]. Acta Automatica Sinica, 2013, 39(8): 1330-1338.
    [15]
    Bi S, Niu C, Cai Y, et al. A Waypoint-tracking Controller for a Bionic Autonomous Underwater Vehicle with Two Pectoral Fins[J]. Advanced Robotics, 2014, 28(10): 673-681.
    [16]
    Liao P, Zhang S, Sun D. A Dual Caudal-fin Miniature Robotic Fish with an Integrated Oscillation and Jet Propulsive Mechanism[J]. Bioinspiration & Biomimetics, 2018, 13(3): 036007.
    [17]
    Rosenberger L J, Westneat M W. Functional Morphology of Undulatory Pectoral Fin Locomotion in the Stingray Taeniura Lymma(Chondrichthyes: Dasyatidae)[J]. The Journal of Experimental Biology, 1999, 202(24): 3523-3539.
    [18]
    Lighthill M J. Large-Amplitude Elongated-Body Theory of Fish Locomotion[J]. Proceedings of the Royal Society of London, 1971, 179(1055): 125-138.
    [19]
    俞经虎, 竺长安, 朱家祥, 等. 仿生机器鱼尾鳍的动力学研究[J]. 系统仿真学报, 2005, 17(4): 947-949.

    Yu Jing-hu, Zhu Chang-an, Zhu Jia-xiang, et al. Research of Steady Control of Tail Fin of Robotic-fish[J]. Journal of System Simulation, 2005, 17(4): 947-949.
    [20]
    Hong C, Zhu C A. Modeling the Dynamics of Biomimetic Underwater Robot Fish[C]//IEEE International Confer-ence on Robotics and Biomimetics. Shatin, China: IEEE, 2005: 478-483.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(715) PDF Downloads(374) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return