• 中国科技核心期刊
  • JST收录期刊
DENG Mei-huan, HAO Zeng-zhou, GONG Fang, TAO Bang-yi, HE Xian-qiang. Effect of Three-Dimensional Temperature and Salinity Structure on Secci Disk Depth in South China Sea[J]. Journal of Unmanned Undersea Systems, 2018, 26(6): 596-604. doi: 10.11993/j.issn.2096-3920.2018.06.014
Citation: DENG Mei-huan, HAO Zeng-zhou, GONG Fang, TAO Bang-yi, HE Xian-qiang. Effect of Three-Dimensional Temperature and Salinity Structure on Secci Disk Depth in South China Sea[J]. Journal of Unmanned Undersea Systems, 2018, 26(6): 596-604. doi: 10.11993/j.issn.2096-3920.2018.06.014

Effect of Three-Dimensional Temperature and Salinity Structure on Secci Disk Depth in South China Sea

doi: 10.11993/j.issn.2096-3920.2018.06.014
  • Publish Date: 2018-12-31
  • The experiment, navigation depth and sea route of an Unmanned Undersea Vehicle (UUV) are affected by ocean current, transparency, spring layer, seawater temperature and salinity, as well as other complex hydrological environments. Based on the information ow concept, this paper investigates the cause-effect relation between the three-dimensional temperature and salinity structure and the Secci Disk Depth (SDD) by using the data of satellite remote sensing and numerical model in South China Sea, which avoids the disadvantage of the traditional correlation analysis that the causal relationship among variables cannot be accurately described. The results show that: 1) The SDD in the area around the Zhongsha Islands and offshore with lower salinity is mainly affected by the salinity of the shallow sea water because the chlorophyll concentrations are high in the seawater with higher temperature and lower salinity; 2) Seawater of the area around the Nansha Islands with high temperature and low salinity, so the SDD mainly affected by the temperature of the seawater at a depth of 20-30 meters; 3) The SDD in the area around the Xisha Islands with higher temperature and salinity is mainly affected by the temperature and salinity of the seawater at a depth of 60-70 meters; and 4) Due to the influences of temperature front and suspended sediment, the SDD around Luzon strait is mainly affected by the temperature of the seawater at a depth of 30-50 meters. Therefore, it is suggested that UUV should navigate and conduct experiment beneath the depth with maximum SDD and keep away from the depth range, where the under-water three-dimensional temperature and salinity structure has significant impact on the SDD, in order to ensure its safety, reliability and invisibility.

     

  • loading
  • [1]
    钟宏伟. 国外无人水下航行器装备与技术现状及展望[J]. 水下无人系统学报, 2017, 25(4): 215-225.

    Zhong Hong-wei. Review and Prospect of Equipment and Techniques for Unmanned Undersea Vehicle in Foreign Countries[J]. Journal of Unmanned Undersea Systems, 2017, 25(4): 215-225.
    [2]
    王奎民. 主要海洋环境因素对水下航行器航行影响分析[J]. 智能系统学报, 2015, 10(2): 316-323.

    Wang Kui-min. Influence of Main Ocean Environments on the Navigation of Underwater Vehicles[J]. CAAI Transactions on Intelligent Systems, 2015, 10(2): 316-323.
    [3]
    李凡, 郭新毅, 张毅, 等. 水下声传播的发展及其应用[J]. 物理, 2014, 43(10): 658-666.

    Li Fan, Guo Xin-yi, Zhang Yi, et al. Development and Applications of Underwater Acoustic Propagation[J]. Physics, 2014, 43(10): 658-666.
    [4]
    Richards S D, Heathershaw A D, Thorne P D. The Effect of Suspended Particulate Matter on Sound Attenuation in Seawater[J]. Journal of the Acoustical Society of America, 1996, 100(3): 1447-1450.
    [5]
    文洪涛, 杨燕明, 刘贞文, 等. 混浊水的声衰减研究进展及应用前景[J]. 海洋通报, 2008, 27(6): 88-94.

    Wen Hong-tao, Yang Yan-ming, Liu Zhen-wen, et al. Re-cent Advance and Application Prospects of Sound Attenuation in Turbid Water[J]. Marine Science Bulletin, 2008, 27(6): 88-94.
    [6]
    彭临慧, 王桂波. 中国近海悬浮颗粒物海水声波衰减[J]. 声学学报, 2008, 33(5): 389-395.

    Peng Lin-hui, Wang Gui-bo. Sound Attenuation in Suspended Particulate Matter Seawater of Chinese Sea Off-shor[J]. ACTA Acustica, 2008, 33(5): 389-395.
    [7]
    姜璐, 朱海, 李松. 机载激光雷达最大探测深度同海水透明度的关系[J]. 激光与红外, 2005, 35(6): 397-399.

    Jiang Lu, Zhu Hai, Li Song, The Relationship Between Max Survey Depth of Airborne Ocean Lidar and Secchi Depth[J]. Laser & Infrared, 2005, 35(6): 397-399.
    [8]
    钟晓春, 李源慧. 激光在海水中的衰减特性[J]. 电子科技大学学报, 2010, 39(4): 574-577.

    Zhong Xiao-chun, Li Yuan-hui, Attenuation Characteristics of Laser in the Seawater[J]. Journal of University of Electronic Science and Technology of China, 2010, 39(4): 574-577.
    [9]
    Yanagi T, Inoue K I. A Numerical Experiment on the Sedimentation Processes in the Yellow Sea and the East China Sea[J]. Journal of Oceanography, 1995, 51(5): 537-552.
    [10]
    张晨, 戚建华, 左军成, 等. 黄、渤海温跃层三维数值模拟[J]. 海洋学报, 1997, 19(6): 12-20.
    [11]
    杜岩. 南海混合层和温跃层的季节动力过程[D]. 青岛:中国海洋大学, 2002.
    [12]
    费尊乐. 渤海海水透明度与水色的研究[J]. 黄渤海海洋, 1986, 4(1): 36-43.

    Fei Zun-le. Study on the Water Colour and Transparency in the Bohai Sea[J]. Journal of Oceanography of HuangHai & BoHai Seas, 1986, 4(1): 36-43.
    [13]
    黎洁溪. 南海北部海水透明度分布变化概况[J]. 海洋通报, 1985(4): 3-6.

    Li Jie-xie. Outline of the Distribution and Variation of Water Transparency in the Northern South China Sea[J]. Marine Science Bulletin, 1985(4): 3-6.
    [14]
    张春桂, 曾银东. 台湾海峡海水透明度遥感监测及时空变化分析[J]. 气象与环境学报, 2015, 31(2): 73-81.

    Zhang Chun-gui, Zeng Yin-dong. Remote Sensing Monitoring and Spatial-temporal Change of Seawater Transparency in Taiwan Strait[J]. Journal of Meteorology and Environment, 2015, 31(2): 73-81.
    [15]
    高磊, 姚海燕, 张蒙蒙, 等. 青岛近岸海域海水透明度时空变化及与环境因子之间的关系[J]. 海洋学研究, 2017, 35(3): 79-84.

    Gao Lei, Yao Hai-yan, Zhang Meng-meng, et al, Temporal and Spatial Variation of Seawater Transparency and Its Relationship with Environmental Factors in Qingdao Coastal Area[J]. Journal of Marine Sciences, 2017, 35(3): 79-84.
    [16]
    郑晓琴, 丁平兴, 胡克林. 长江口及邻近海域夏季温盐分布特征数值分析[J]. 华东师范大学学报(自然科学版), 2008(6): 14-23.

    Zhang Xiao-qin, Ding Ping-xing, Hu Ke-lin. Numerical Analysis of Characteristics of Temperature-salinity Distributions at the Changjiang Estuary and Its Adjacent Ar-eas in Summer[J]. Journal of East China Normal University(Natural Science), 2008(6): 14-23.
    [17]
    何贤强, 潘德炉, 黄二辉, 等. 中国近海透明度卫星遥感监测[C]//海洋监测高技术2003年度战略研讨会. 北京: 中国21进程管理中心, 2003.
    [18]
    Deng Li-jing, Wei Hao, Wang Jia-ning. Vertical Distribution of Kuroshio Velocity at PN Section and Its Formation Mechanism[J]. Marine Science Bulletin, 2015, 33(1): 26- 39.
    [19]
    陈心一, 郝增周, 潘德炉, 等. 中国近海海面风场的时空特征分析[J]. 海洋学研究, 2014, 32(1): 1-10.

    Chen Xin-yi, Hao Zeng-zhou, Pan De-lu, et al. Analysis of Temporal and Spatial Feature of Sea Surface Wind Field in China Offshore[J]. Journal of Marine Sciences, 2014, 32(1): 1-10.
    [20]
    Liang X S. Unraveling the Cause-Effect Relation Between Time Series[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2014, 90(5-1): 052150.
    [21]
    任焕莲. 辛安泉系统岩溶地下水降水补给滞后分析研究[J]. 地下水, 2007, 29(5): 59-63.

    Ren Huan-lian. Time Lag of Rainfall Recharge to the Karst Groundwater in Xin’an Springs[J]. Ground water, 2007, 29(5): 59-63.
    [22]
    Schreiber T. Measuring Information Transfer[J]. Physical Review Letters, 2000, 85(2): 461-464.
    [23]
    Stips A, Macias D, Coughlan C, et al. On the Causal Structure between CO2 and Global Temperature[J]. ?Scientific Reports, 2016, 6: 21691.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(663) PDF Downloads(683) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return