• 中国科技核心期刊
  • JST收录期刊
YU Fu-jian, WANG Bin, ZHANG Pei-zhen. Numerical Simulation on Acoustic Scattering Characteristics of Targets Buried in Fluctuating Seabed[J]. Journal of Unmanned Undersea Systems, 2018, 26(6): 533-536. doi: 10.11993/j.issn.2096-3920.2018.06.004
Citation: YU Fu-jian, WANG Bin, ZHANG Pei-zhen. Numerical Simulation on Acoustic Scattering Characteristics of Targets Buried in Fluctuating Seabed[J]. Journal of Unmanned Undersea Systems, 2018, 26(6): 533-536. doi: 10.11993/j.issn.2096-3920.2018.06.004

Numerical Simulation on Acoustic Scattering Characteristics of Targets Buried in Fluctuating Seabed

doi: 10.11993/j.issn.2096-3920.2018.06.004
  • Received Date: 2018-07-19
  • Rev Recd Date: 2018-08-01
  • Publish Date: 2018-12-31
  • The acoustic scattering of buried elastic target under the bistatic condition is numerically calculated with the finite element method(FEM) on the COMSOL multi-physical field platform. A fluctuating seabed model is established by Gaussian spectrum method, and then the effects of fluctuation height, correlation length, grazing angle and other parameters on the acoustic characteristic of buried targets are obtained. The results show that the echo-to-reverberation ratio of the bistatic is fluctuant when sound enters in single direction while is received on a multi-point linear array. That is, for flat or gently fluctuating seabed, the forward waveform oscillates violently and presents quasi-periodicity, but the regularity of the echo-to-reverberation ratio fluctuation gradually disappears with the increase of seabed roughness. When a sound wave irradiates the seabed vertically, the variation of the correlation length of seabed fluctuation has a significant influence on the Rayleigh variance of the scattering energy, but has little effect on Rayleigh mean. If a sound wave enters obliquely, the correlation length and fluctuation height are the main factors affecting the Rayleigh variance and mean value. These results may provide a reference for acoustic detection of buried targets in seabed.

     

  • loading
  • [1]
    Zampolli M, Tesei A, Jensen F B, et al. A Computationally Efficient Finite Element Model with Perfectly Matched Layers Applied to Scattering from Axially Symmetric Objects[J]. Journal of the Acoustical Society of America, 2007, 122(3): 1472-1485.
    [2]
    Zampolli M, Tesei A, Canepa G, et al. Computing the Far Field Scattered or Radiated by Objects Inside Layered Fluid Media Using Approximate Green’s Functions[J]. Journal of the Acoustical Society of America, 2008, 123 (6): 4051-4058.
    [3]
    Zampolli M, Espana A L, Williams K L. Azimuthal Fourier Mode Decomposition of Generic Incident Fields in the Frequency Domain: Computational Model and Results[J]. Journal of the Acoustical Society of America, 2011, 130(4): 2330-2330.
    [4]
    Sot-CresPo J M, Nieto-Vesperinas M, Friberg A T. Scattering from Slighttly Rough Random Surfaces: A Detailed Study on the Validity of the Small Perturbation Method[J] Journal of the Optical Society of America. 1990, 7(7): 1185-1201.
    [5]
    Collaro A, Francesehetti G, Migliaccio M, et al. Gaussian Rough Surfaces and Kirchhoff Approximation[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(2): 392-398.
    [6]
    陈小泉, 马忠成. 小斜率近似方法分析粗糙界面声散射问题[J]. 声学技术, 2009, 28(6): 725-728.

    Chen Xiao-quan, Ma Zhong-cheng. The Small-Slope Approximation Specular Reflection Coefficient Rough Surface Acoustic Scattering[J]. Technical Acoustics, 2009, 28(6): 725-728.
    [7]
    Thorsos E, Broschat S. An Investigation of the Small Slope Approximation for Scattering from Rough Surfaces. Part I. Theory[J]. Journal of the Acoustical Society of America, 1995 , 97(4) : 2082-2093
    [8]
    周士弘, 田玲爱. 粗糙海洋界面散射对低频声传播的影响分析[J]. 声学技术, 2008, 27(5): 80-81.

    Zhou Shi-hong, Tian Ling-ai. Effect of Scattering from Rough Sea Surface and Bottom Boundaries on Low-Frequency Sound Propagation[J]. Technical Acoustics, 2008, 27(2): 80-81
    [9]
    郁高坤, 彭临慧. 声波在粗糙液-液分界面上的散射[J]. 中国科学G辑, 2008, 38(2): 156-164.

    Yu Gao-kun, Peng Ling-hui. Scattering of Sound Wave from Rough Liquid-Liquid Interface[J]. Science in China Series G-Physics, Mechanics & Astronomy, 2008, 38(2): 156-164.
    [10]
    李楠, 张明敏. 双基地海底散射模型仿真与试验研究[J]. 海洋技术, 2009, 28(4): 48-51.

    Li nan, Zhang ming-min. Study on Simulation and Experiment of the Bistatic Bottom Scattering Model[J]. Ocean Technology, 2009, 28(4): 48-51
    [11]
    Isakson M J, Chotiros N P. Finite Element Modeling of Acoustic Scattering from Fluid and Elastic Rough Inter-faces[J]. IEEE Journal of Oceanic Engineering, 2014, 40(2): 1-10.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(712) PDF Downloads(440) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return