• 中国科技核心期刊
  • JST收录期刊
XI Rui, DANG Qian-qian, HE Cheng-bing, ZHANG Rui-yu, ZHANG Qun-fei. Underwater Acoustic Communication Technology Adopting Low Complexity Single Carrier Frequency-Domain Turbo Equalization[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 395-402. doi: 10.11993/j.issn.2096-3920.2018.05.003
Citation: XI Rui, DANG Qian-qian, HE Cheng-bing, ZHANG Rui-yu, ZHANG Qun-fei. Underwater Acoustic Communication Technology Adopting Low Complexity Single Carrier Frequency-Domain Turbo Equalization[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 395-402. doi: 10.11993/j.issn.2096-3920.2018.05.003

Underwater Acoustic Communication Technology Adopting Low Complexity Single Carrier Frequency-Domain Turbo Equalization

doi: 10.11993/j.issn.2096-3920.2018.05.003
  • Received Date: 2017-08-09
  • Rev Recd Date: 2017-09-10
  • Publish Date: 2018-10-31
  • Underwater acoustic communication in shallow sea has the characteristics of severe multipath delay spread, channel fading and low signal-to-noise ratio(SNR). To overcome the high computation complexity and high sensitivity to receiver parameters of conventional time-domain decision feedback equalizer, a low complexity frequency-domain Turbo iterative equalization method is proposed for sparse underwater communication channel, which is based on single-carrier block transmission structure with spreading codes. At the transmitter spreading codes are inserted between data blocks as the cyclic prefixes. At the receiver known spreading codes are employed to estimate the sparse channel and the rotational phase caused by Doppler shift, then the frequency-domain Turbo equalization technique based on the minimum mean square error criteria and the multichannel joint processing method are used to eliminate the intersymbol interference(ISI) caused by the multipath effect. The performance of the system is improved significantly. Lake test shows that the underwater communication with effective data rates of 3 kbps and 4.5 kbps is achieved via QPSK and 8PSK modulation, respectively, at a communication distance of 10.8 km, and error-free transmission is always achieved in three times of iterative equalization. This study may provide a reference for the research of robust underwater acoustic communication with high data rate.

     

  • loading
  • [1]
     [1] Kilfoyle D B, Baggeroer A B. The State of the Art in Un-derwater Acoustic Telemetry[J]. IEEE J. Ocean. Eng., 2000, 25(1): 4-27.
    [2]
    Stojanovic M, Catipovic J A, Proakis J. G. Phase-coherent Digital Communications for Underwater Acoustic Channels [J]. IEEE J. Ocean. Eng., 1994, 19(1): 100-111.
    [3]
    朱维庆, 朱敏, 王军伟, 等. 水声高速图像传输信号处理方法[J]. 声学学报, 2007, 32(5): 385-397.

    Zhu Wei-qing, Zhu Min, Wang Jun-wei, et al. Signal Processing for High Speed Underwater Acoustic Trans-Mission of Image[J]. Chinese Journal of Acoustics, 2007, 32(5): 385-397.
    [4]
    朱维庆, 朱敏, 武岩波, 等. 载人潜水器“蛟龙”号的水声通信信号处理[J]. 声学学报, 2012, 37(6): 565-573.

    Zhu Wei-qing, Zhu Min, Wu Yan-bo, et al. Signal Pro-cessing in Underwater Acoustic Communication System for Manned Deep Submersible “Jiaolong”[J]. Chinese Journal of Acoustics, 2012, 37(6): 565-573.
    [5]
    Stojanovic M, Catipovic J A, Proakis J G. Adaptive MultiChannel Combining and Equalization for Underwater Acoustic Communications[J]. Journal of the Acoustical Society of America, 1993, 94(3): 1621-1631.
    [6]
    Li B S, Zhou S L, Stojanovic M, et al. Multicarrier Communication over Underwater Acoustic Channels With Nonuniform Doppler Shifts[J]. IEEE J. Ocean. Eng., 2008, 33(2): 198-209.
    [7]
    Stojanovic M. OFDM for Underwater Acoustic Communications: Adaptive Synchronization and Sparse Channel Estimation[C]// Proc. IEEE ICASSP, Las Vegas: IEEE, 2008.
    [8]
    Sari H, Karam G, Jeanclaude I. Transmission Techniques for Digital Terrestrial TV Broadcasting[J]. IEEE Communications Magazine, 1995, 33(2): 100-109.
    [9]
    Falconer D, Ariyavisitakul S L, Benyamin-Seeyar A, et al. Frequency Domain Equalization for Single-carrier BroadBand Wireless Systems[J]. IEEE Communications Magazine, 2002, 40(4): 58-66.
    [10]
    Wang Z, Ma X, Giannakis G B. OFDM or Single-carrier Block Transmission[J]. IEEE Tran. Communication, 2004, 52(3): 380-394.
    [11]
    Zheng Y R, Xiao C, Yang T C, et al. Frequency-domain Channel Estimation and Equalization for Shallow-water Acoustic Communications[J]. Elsevier Journal on Physical Communication, 2010, 3(1): 48-63.
    [12]
    He C B, Huo S Y, Wang H, et al. Single Carrier with Multi-channel Time-frequency Domain Equalization for Underwater Acoustic Communications[C]//Proceedings of the IEEE International Conference on Acoustic, Speech and Signal Processing. South Brisbane: IEEE, 2015: 3009-3013.
    [13]
    He C B, Huang J G, Zhang Q F. Hybrid Time-frequency Domain Equalization for Single-carrier Underwater Acoustic Communications[C]//WUWNet’12 Proceedings of the Seventh ACM International Conference on Underwater Networks and Systems. Los Angeles: ACM, 2012: 5-6.
    [14]
    Pancaldi F, Vitetta G. M, Kalbasi R, et al. Single-carrier Frequency Domain Equalization[J]. IEEE Signal Process. Mag, 2008, 25(5): 37-56.
    [15]
    Benvenuto N, Dinis R, Falconer D, et al. Single Carrier Modulation with Nonlinear Frequency Domain Equalization: An Idea Whose Time Has Come—Again[J]. Proc. IEEE, 2010, 98(1): 69-96.
    [16]
    Xia M, Rouseff D, Ritcey J A, et al. Underwater Acoustic Communication in a Highly Refractive Environment Using SC-FDE[J]. IEEE J. Ocean. Eng, 2014, 39(3): 491–499.
    [17]
    He C B, Huang J G, Zhang Q F, et al. Single Carrier Fre-quency Domain Equalizer for Underwater Wireless Communication[C]//IEEE Mobile Computing and Communication 2009 Conf., KunMing, China: IEEE, 2009.
    [18]
    Tuchler M, Koetter R, Singer A. C. Turbo Equalization: Principles and New Results[J]. IEEE Trans. Commun., 2002, 50(5): 754–767.
    [19]
    Xi J Y, Yan S F, Xu L J, et al. Bidirectional Turbo Equalization for Underwater Acoustic Communications[J]. Chinese Journal of Acoustics, 2016, 35(4): 440-451.
    [20]
    Ng B, Lam C, Falconer D. Turbo Frequency Domain Equalization for Single-carrier Broadband Wireless Systems[J]. IEEE Trans.Wireless Commun, 2007, 6(2): 759-767.
    [21]
    Wu J X, Zheng Y R. Low Complexity Soft-input Soft-output Block Decision Feedback Equalization[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(2): 281–289.
    [22]
    Zheng Y R, Wu J X, Xiao C S. Turbo Equalization for Single-carrier Underwater Acoustic Communications[J]. IEEE Commun. Mag., 2015, 53(11): 79-87.
    [23]
    Wang L B, Jun T, Zheng Y R. Single-carrier Frequen-cy-domain Turbo Equalization without Cyclic Prefix or Zero Padding for Underwater Acoustic Communications [J]. Journal of the Acoustical Society of America, 2012, 132(6): 3809-3817.
    [24]
    Yang T C, Huang S H. Building a Database of Ocean Channel Impulse Responses for Underwater Acoustic Communication Performance Evaluation: Issues, Requirements, Methods and Results[C]//ACM International Conference on Underwater Networks & Systems. Shanghai, China: ACM, 2016: 29.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(825) PDF Downloads(552) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return