• 中国科技核心期刊
  • JST收录期刊
Volume 30 Issue 3
Jul  2022
Turn off MathJax
Article Contents
XU Wei-zheng, HUANG Yu, LI Ye-xun, ZHAO Hong-tao, ZHENG Xian-xu. Formation Method of Planar Shock Waves in Underwater Explosions Using Small Charges inside a Tube and Its Applications[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 405-412. doi: 10.11993/j.issn.1673-1948.2022.03.018
Citation: XU Wei-zheng, HUANG Yu, LI Ye-xun, ZHAO Hong-tao, ZHENG Xian-xu. Formation Method of Planar Shock Waves in Underwater Explosions Using Small Charges inside a Tube and Its Applications[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 405-412. doi: 10.11993/j.issn.1673-1948.2022.03.018

Formation Method of Planar Shock Waves in Underwater Explosions Using Small Charges inside a Tube and Its Applications

doi: 10.11993/j.issn.1673-1948.2022.03.018
  • Received Date: 2022-02-28
  • Accepted Date: 2022-05-06
  • Rev Recd Date: 2022-03-18
  • Available Online: 2022-07-18
  • Shock waves, bubbles, and diffraction effects during underwater explosions, as well as the coupling of these effects, make the investigation of underwater explosion damage complicated. In this paper, an experimental method for forming planar shock waves underwater using small charges inside a tube is presented to decouple these effects. Numerical simulations and theoretical models are used to explore the attenuation rules of planar shock waves in a tube. It is determined that planar shock waves with exponential attenuation forms can be generated by placing the charge at one end of the tube to achieve end-plane detonation. Theoretical results combined with overpressure peak versus distance curves and shock wave location versus time curves coincide well with simulation results. Applications of the proposed experimental method include the analysis of damage effects on typical structures and exploration of fluid-solid coupling mechanisms. The presented results also provide guidance for the damage evaluation of underwater explosions.

     

  • loading
  • [1]
    郑监, 卢芳云, 李翔宇. 金属板在水下爆炸加载下的动态响应研究进展[J]. 中国测试, 2018, 44(10): 20-30.

    Zheng Jian, Lu Fang-yun, Li Xiang-yu. Research Progress on Dynamic Response of Metal Plate in Underwater Explosion Loading[J]. China Measurement & Test, 2018, 44(10): 20-30.
    [2]
    Filler W S. Propagation of Shock Waves in a Hydrodynamic Conical Shock Tube[J]. Physics of Fluids, 1964, 7(5): 664-667. doi: 10.1063/1.1711266
    [3]
    Coombs A, Thornhill C K. An Underwater Explosive Shock Gun[J]. Journal of Fluid Mechanics, 1967, 29(2): 373-383. doi: 10.1017/S0022112067000886
    [4]
    Zalesak J F, Poche L B. The Shock Test Facility: An Explosive-driven, Water-filled Conical Shock Tube[C]//60th Shock and Vibration Symposium. The United States: The Acoustical Society of America, 1989.
    [5]
    Heshmati M, Zamani J, Mozafari A. The Experimental and Numerical Impacts of Geometrical Parameters of Conical Shock Tube on the Function, Maximum Pressure and Generative Impulses to Expose Equivalent Mass and Behavioral Equation[J]. Materialwissenschaft Und Werkstofftechnik, 2016, 47(7): 623-634. doi: 10.1002/mawe.201600510
    [6]
    Heshmati M, Zamani A J, Mozafari A. Experimental and Numerical Study of Isotropic Circular Plates ’ Response to Underwater Explosive Loading, Created by Conic Shock Tube[J]. Materialwissenschaft Und Werkstofftechnik, 2017, 48(2): 106-121. doi: 10.1002/mawe.201600578
    [7]
    Leblanc J, Shukla A. Dynamic Response of Curved Composite Panels to Underwater Explosive Loading: Experimental and Computational Comparisons[J]. Composite Structures, 2011, 93(11): 3072-3081. doi: 10.1016/j.compstruct.2011.04.017
    [8]
    Leblanc J, Shukla A. Response of E-glass/vinyl Ester Composite Panels to Underwater Explosive Loading: Effects of Laminate Modifications[J]. International Journal of Impact Engineering, 2011, 38(10): 796-803. doi: 10.1016/j.ijimpeng.2011.05.004
    [9]
    Leblanc J, Gardner N, Shukla A. Effect of Polyurea Coatings on the Response of Curved E-Glass/Vinyl Ester Composite Panels to Underwater Explosive Loading[J]. Composites Part B Engineering, 2013, 44(1): 565-574. doi: 10.1016/j.compositesb.2012.02.038
    [10]
    Deshpande V S, Heaver A, Fleck N A. An Underwater Shock Simulator[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 1021-1041. doi: 10.1098/rspa.2005.1604
    [11]
    Espinosa H D, Lee S, Moldovan N. A Novel Fluid Structure Interaction Experiment to Investigate Deformation of Structural Elements Subjected to Impulsive Loading[J]. Experimental Mechanics, 2006, 46(6): 805-824. doi: 10.1007/s11340-006-0296-7
    [12]
    项大林, 荣吉利, 何轩, 等. 等效水下爆炸冲击加载装置的设计研究[J]. 兵工学报, 2014, 35(6): 857-863.

    Xiang Da-lin, Rong Ji-li, He Xuan, et al. Development of an Equivalent Equipment on Underwater Explosion Impulsive Loading[J]. Acta Armamentarii, 2014, 35(6): 857-863.
    [13]
    任鹏, 张伟, 黄威, 等. 非药式水下爆炸冲击波加载装置研究[J]. 爆炸与冲击, 2014, 34(3): 334-339. doi: 10.11883/1001-1455(2014)03-0334-06

    Ren Peng, Zhang Wei, Huang Wei, et al. Research on Non-explosive Underwater Shock Loading Device[J]. Explosion and Shock Waves, 2014, 34(3): 334-339. doi: 10.11883/1001-1455(2014)03-0334-06
    [14]
    杨一方, 郭锐, 刘萌萌, 等. 一种新型水下爆炸冲击等效加载实验方法[J]. 鱼雷技术, 2014, 22(5): 357-360.

    Yang Yi-fang, Guo Rui, Liu Meng-meng, et al. An Equivalent Loading Method for Underwater Explosion Impact Experiment[J]. Torpedo Technology, 2014, 22(5): 357-360.
    [15]
    项大林, 荣吉利, 何轩, 等. 基于三维数字图像相关方法的水下冲击载荷作用下铝板动力学响应研究[J]. 兵工学报, 2014, 35(8): 1210-1217. doi: 10.3969/j.issn.1000-1093.2014.08.012

    Xiang Da-lin, Rong Ji-li, He Xuan, et al. Dynamics Analysis of AL Plate Subjected to Underwater Impulsive Loads Based on 3D DIC[J]. Acta Armamentarii, 2014, 35(8): 1210-1217. doi: 10.3969/j.issn.1000-1093.2014.08.012
    [16]
    任鹏, 田阿利, 张伟, 等. 水下冲击波载荷作用下气背固支圆板动态毁伤实验[J]. 爆炸与冲击, 2016, 36(5): 617-624. doi: 10.11883/1001-1455(2016)05-0617-08

    Ren Peng, Tian A-li, Zhang Wei, et al. Failure Mode of Clamped Air-back Circular Panel Subjected to Underwater Shock Loading[J]. Explosion and Shock Waves, 2016, 36(5): 617-624. doi: 10.11883/1001-1455(2016)05-0617-08
    [17]
    任鹏, 张伟, 刘建华, 等. 水下冲击波作用的铝合金蜂窝夹层板动力学响应研究[J]. 振动与冲击, 2016, 35(2): 7-11.

    Ren Peng, Zhang Wei, Liu Jian-hua, et al. Dynamic Analysis of Aluminium Alloy Honeycomb Core Sandwich Panels Subjected to Underwater Shock Loading[J]. Journal of Vibration and Shock, 2016, 35(2): 7-11.
    [18]
    SINGH V P, MADAN A K, SUNEJA H R,等. Propagation of spherical shock waves in water[J]. Sadhana, 1980. 3(2): 169-175.

    Singh V P, Madan A K, Suneja H R, et al. Propagation of Spherical Shock Waves in Water[J]. Sadhana, 1980, 3(2): 169-175.
    [19]
    安丰江, 吴成, 王宁飞. 水下爆炸能量耗散特性分析研究[J]. 北京理工大学学报, 2011, 31(4): 379-382.

    An Feng-jiang, Wu Cheng, Wang Ning-fei. A Research on the Energy Dissipation of Underwater Explosion[J]. Transactions of Beijing Institute of Technology, 2011, 31(4): 379-382.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article Views(68) PDF Downloads(14) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return