• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波浪水槽中毫米波雷达跨介质通信实验研究

曾玉明 张坤 乐南燕 宋春毅 徐志伟

曾玉明, 张坤, 乐南燕, 等. 波浪水槽中毫米波雷达跨介质通信实验研究[J]. 水下无人系统学报, 2024, 32(4): 628-636 doi: 10.11993/j.issn.2096-3920.2024-0109
引用本文: 曾玉明, 张坤, 乐南燕, 等. 波浪水槽中毫米波雷达跨介质通信实验研究[J]. 水下无人系统学报, 2024, 32(4): 628-636 doi: 10.11993/j.issn.2096-3920.2024-0109
ZENG Yuming, ZHANG Kun, LE Nanyan, SONG Chunyi, XU Zhiwei. Experimental Study of Trans-Medium Communication of Millimeter-Wave Radar in Wave Tank[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 628-636, 643. doi: 10.11993/j.issn.2096-3920.2024-0109
Citation: ZENG Yuming, ZHANG Kun, LE Nanyan, SONG Chunyi, XU Zhiwei. Experimental Study of Trans-Medium Communication of Millimeter-Wave Radar in Wave Tank[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 628-636, 643. doi: 10.11993/j.issn.2096-3920.2024-0109

波浪水槽中毫米波雷达跨介质通信实验研究

doi: 10.11993/j.issn.2096-3920.2024-0109
基金项目: 国家自然科学基金青年项目(62001426); 浙江省自然科学基金探索项目(LQ21F010004); 东海青年人才启航基金项目资助(L24QH001).
详细信息
    作者简介:

    曾玉明(1989-), 女, 博士, 副研究员, 主要研究方向为毫米波雷达信号处理

    通讯作者:

    宋春毅(1978-), 男, 博士, 教授, 主要研究方向为毫米波雷达探测.

  • 中图分类号: TJ6; TB675.7

Experimental Study of Trans-Medium Communication of Millimeter-Wave Radar in Wave Tank

  • 摘要: 利用毫米波雷达探测由水下设备声波激励的水面微幅波有望实现水下设备对外无线跨介质通信。水面波动效应研究对实现基于毫米波雷达微幅波探测的跨介质通信具有重要价值。针对此, 文中在波浪水槽中对二进制相移键控和二进制频移键控调制信号跨介质通信开展了实验, 测试分析了不同幅度水面波动对跨介质通信的影响, 评估了基于空间分集技术的通信性能。实验结果表明, 中等水面波动对毫米波雷达跨介质通信性能的影响最小, 基于多通道合并的空间分集技术能提升波动水面上的跨介质通信质量。文中的研究可为基于毫米波雷达微幅波探测的跨介质通信技术在波动水面实际应用提供参考。

     

  • 图  1  跨介质通信技术对比

    Figure  1.  Comparison of cross-medium communication technologies

    图  2  声源级为185 dB/μPa时不同频率和水深下微幅波振幅

    Figure  2.  The amplitude of micro-waves at different frequencies and depths for 185 dB/μPa sound source

    图  3  微幅波在77 GHz雷达中产生的相位变化

    Figure  3.  Phase changes generated by micro-waves in 77 GHz radar

    图  4  理想点声源(50 Hz)激励微幅波

    Figure  4.  Micro-waves excited by an ideal point sound source (50 Hz)

    图  5  声波束激励的微幅波三维分布

    Figure  5.  Three-dimensional distribution of micro-waves excited by sound beam

    图  6  声波在不同水深中衰减(假设为圆柱形传播衰减)

    Figure  6.  Sound wave attenuation in different water depths (assuming cylindrical propagation attenuation)

    图  7  线性调频波形以及频率示意图

    Figure  7.  Schematic diagram of linear frequency modulation waveform and frequency

    图  8  跨介质通信原理示意图

    Figure  8.  Principle of trans-medium communication

    图  9  波浪水槽实验场景图

    Figure  9.  Scene of wave tank experiment

    图  10  信号处理流程图

    Figure  10.  Flowchart of signal processing

    图  11  不同推程时波高仪记录的水面波动

    Figure  11.  The water surface fluctuations recorded by the wave height meter at different pash plate strokes

    图  12  不同音量下振幅分布直方图

    Figure  12.  Histograms of amplitude distribution at different volumes

    图  13  不同推程下BFSK调制SNR分布直方图

    Figure  13.  Histograms of SNR distribution at different push plate stokes

    图  14  不同推程下莱斯因子分布直方图

    Figure  14.  Histograms of Rice factor distribution at different push plate stokes

    图  15  不同推程下误码率分布直方图

    Figure  15.  Histograms of error rate distribution at different push plate stokes

    图  16  BFSK和BPSK各通道以及合并通道误码率

    Figure  16.  Error rate of BFSK and BPSK channels and joint channels

    图  17  莱斯因子与水面波动对比

    Figure  17.  Comparison between Rice factor and water surface fluctuations

    表  1  雷达参数列表

    Table  1.   Parameters of radar system

    参数名称数值
    频率/GHz77
    带宽/GHz3.06
    脉冲采样点256
    脉冲周期/μs100
    脉冲数255×256
    天线波束宽度/(° )30, 80
    下载: 导出CSV

    表  2  不同推程下雷达数据统计表

    Table  2.   BFSK data statistics table at different push plate stokes

    推程
    /mm
    波高
    /cm
    BFSK BPSK
    SNR
    /dB
    莱斯
    因子
    SNR
    /dB
    莱斯
    因子
    20 2 −12.1 1.8 −13.5 2.1
    30 4 −2.3 6.4 −5.2 7.2
    40 6 −5.5 21.1 −2.9 15.7
    50 8 −5.7 3.2 −4.9 10.1
    60 9 −6.5 2.8 −9.8 2.8
    70 10 −7.4 3.3 −10.7 2.6
    下载: 导出CSV
  • [1] TP S B, KUMAR S. Underwater communications[C]//2015 IEEE Underwater Technology(UT). Chennai, India: IEEE, 2015.
    [2] REDFORD D. Submarine: A cultural history from the great war to nuclear combat[J]. International Journal of Maritime History, 2013, 15(2): 239-241.
    [3] 方尔正, 李宗儒, 桂晨阳. 穿海牵天提升对潜通信保障能力—跨介质通信技术现状及展望[J]. 国防科技工业, 2022(2): 59-62.
    [4] ERICKSON A S, GOLDSTEIN L J. China’s future nuclear submarine force: insights from Chinese writings[J]. Naval War College Review, 2007, 60(1): 54-80.
    [5] BERNSTEIN S L, BURROWS M L, EVANS J E, et al. Long-range communications at extremely low frequencies[J]. Proceedings of the IEEE, 1974, 62(3): 292-312. doi: 10.1109/PROC.1974.9426
    [6] ROWE H. Extremely low frequency(ELF) communication to submarines[J]. IEEE Transactions on Communications, 1974, 22(4): 371-385. doi: 10.1109/TCOM.1974.1092211
    [7] WIENER T, KARP S. The role of blue/green laser systems in strategic submarine communications[J]. IEEE Transactions on Communications, 1980, 28(9): 1602-1607. doi: 10.1109/TCOM.1980.1094858
    [8] SUN X, KONG M, SHEN C, et al. On the realization of across wavy water-air-interface diffuse-line-of-sight communication based on an ultraviolet emitter[J]. Optics Express, 2019, 27(14): 19635-19649. doi: 10.1364/OE.27.019635
    [9] 赵长明, 黄杰. 未来激光探潜和跨介质通信技术的发展[J]. 光学技术, 2001, 27(1): 53-56. doi: 10.3321/j.issn:1002-1582.2001.01.015

    ZHAO C M, HUANG J. Development of laser-submarine communication and detection technology in the future[J]. Optical Technology, 2001, 27(1): 53-56. doi: 10.3321/j.issn:1002-1582.2001.01.015
    [10] 张巍. 激光跨介质通信技术的发展分析[J]. 舰船电子工程, 2014, 34(4): 4-7.
    [11] CHE X, WELLS I, DICKERS G, et al. Re-evaluation of RF electromagnetic communication in underwater sensor networks[J]. IEEE Communications Magazine, 2010, 48(12): 143-151. doi: 10.1109/MCOM.2010.5673085
    [12] LEE M S, BOURGEOIS B S, HSIEH S T, et al. A laser sensing scheme for detection of underwater acoustic signals[C]//Conference Proceedings’88. Knoxville, TN, USA: IEEE, 1988: 253-257.
    [13] 张晓琳, 毛红杰, 李凯, 等. 相位解调实现低频水表面声波振幅探测[J]. 红外与激光工程, 2019, 48(5): 1-7.

    ZHANG X L, MAO H J, LI K, et al. Amplitude detection of low frequency water surface acoustic wave based on phase demodulation[J]. Infrared and Laser Engineering, 2019, 48(5): 1-7.
    [14] LAI Y, ZHOU H, ZENG Y, et al. Accuracy assessment of surface current velocities observed by OSMAR-S high-frequency radar system[J]. IEEE Journal of Oceanic Engineering, 2017, 43(4): 1068-1074.
    [15] WANG C J, WEN B Y, MA Z G, et al. Measurement of river surface currents with UHF FMCW radar systems[J]. Journal of Electromagnetic Waves and Applications, 2007, 21(3): 375-386. doi: 10.1163/156939307779367350
    [16] TONOLINI F, ADIB F. Networking across boundaries: enabling wireless communication through the water-air interface[C]//Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. Budapest, Hungary: ACM, 2018: 117-131.
    [17] TREMAIN D E, ANGELAKOS D J, ANOELAKOS D T, et al. Detection of underwater sound sources by microwave radiation reflected from the water surface[J]. Proceedings of the IEEE, 1972, 60(6): 741-742. doi: 10.1109/PROC.1972.8750
    [18] ROMERO M R, NARAYANAN R M, LENZING E H, et al. Wireless underwater-to-air communications via water surface modulation and radar detection[C]//2020 Radar Sensor Technology XXIV. Bellingham, Washington, US: SPIE, 2020.
    [19] QU F, QIAN J, WANG J, et al. Cross-medium communication combining acoustic wave and millimeter wave: theoretical channel model and experiments[J]. IEEE Journal of Oceanic Engineering, 2022, 47(2): 483-492. doi: 10.1109/JOE.2021.3120373
    [20] QIAN J, QU F, SU J, et al. Theoretical model and experiments of focused phased array for cross-medium communication in misaligned transmitter/receiver scenarios[J]. IEEE Journal of Oceanic Engineering, 2023, 48(4): 1348-1361. doi: 10.1109/JOE.2023.3263202
    [21] 符晓磊, 夏伟杰, 董诗琦. 面向跨水空介质通信的雷达水表面声波提取[J]. 声学技术, 2023, 42(4): 452-461.

    FU X L, XIA W J, DONG S Q. Radar extraction of water surface acoustic wave for underwater-to-air communications[J]. Technical Acoustics, 2023, 42(4): 452-461.
    [22] LUO J, LIANG X, GUO Q, et al. A novel estimation method of water surface micro-amplitude wave frequency for cross-media communication[J]. Remote Sensing, 2022, 14(22): 5889. doi: 10.3390/rs14225889
    [23] ZENG Y, SHEN S, XU Z. Water surface acoustic wave detection by a millimeter wave radar[J]. Remote Sensing, 2023, 15(16): 1-19.
    [24] 邓彬, 李韬, 汤斌, 等. 基于太赫兹雷达的声致海面微动信号检测[J]. 雷达学报, 2023, 12(4): 817-831. doi: 10.12000/JR23117

    DENG B, LI T, TANG B, et al. Feature detection of acoustically induced sea surface micro-motions with Terahertz radar[J]. Journal of Radars, 2023, 12(4): 817-831. doi: 10.12000/JR23117
    [25] Zeng Y, Zhou H, Hugh R, et al. Wind speed inversion in high-frequency radar based on neural network[J]. International Journal of Antennas and Propagation, 2016, 2016(3): 1-8.
    [26] 张烈山. 声波激励水面微幅波的光学外差检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
    [27] 刘伯胜, 雷家煜. 水声学原理[M]. 2版. 哈尔滨: 哈尔滨工程大学出版社, 2010.
    [28] MERCURI M, LORATO I R, LIU Y H, et al. Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor[J]. Nature Electronics, 2019, 2(6): 252-262. doi: 10.1038/s41928-019-0258-6
    [29] TEXAS Instruments. AWR2243BOOST[EB/OL]. (2024-02-05)[2024-05-30]. https://www.ti.com.cn/tool/cn/AWR2243BOOST.
    [30] TEPEDELENLIOGLU C, ABDI A, GIANNAKIS G B, et al. The ricean K factor: Estimation and performance analysis[J]. IEEE Transactions on Wireless Communications, 2003, 2(4): 799-810.
    [31] 张贤达, 保铮. 通信信号处理[M]. 北京: 国防工业出版社, 2000.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  54
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-06
  • 修回日期:  2024-06-28
  • 录用日期:  2024-07-03
  • 网络出版日期:  2024-07-09

目录

    /

    返回文章
    返回
    服务号
    订阅号