• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于元学习与强化学习的跨域自组织网络流量测量优化方法

宋健 聂来森 陶醉 袁奇恩东

宋健, 聂来森, 陶醉, 等. 基于元学习与强化学习的跨域自组织网络流量测量优化方法[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0094
引用本文: 宋健, 聂来森, 陶醉, 等. 基于元学习与强化学习的跨域自组织网络流量测量优化方法[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0094
SONG Jian, NIE Laisen, TAO Zui, YUAN Qiendong. Network Traffic Measurement Optimization for Cross-Domain Ad Hoc Networks: A Meta-Learning and Reinforcement Learning Approach[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0094
Citation: SONG Jian, NIE Laisen, TAO Zui, YUAN Qiendong. Network Traffic Measurement Optimization for Cross-Domain Ad Hoc Networks: A Meta-Learning and Reinforcement Learning Approach[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0094

基于元学习与强化学习的跨域自组织网络流量测量优化方法

doi: 10.11993/j.issn.2096-3920.2024-0094
详细信息
    作者简介:

    宋健:宋 健(1999-), 男, 在读博士, 主要研究方向为网络流量预测

    通讯作者:

    聂来森(1985-), 男, 博士, 副教授, 主要研究方向为跨域通信组网、网络安全.

  • 中图分类号: TP393.06; TN929.5

Network Traffic Measurement Optimization for Cross-Domain Ad Hoc Networks: A Meta-Learning and Reinforcement Learning Approach

  • 摘要: 跨域自组织网络是一种将不同介质上的节点进行自组织、网络拓扑自适应的网络。在跨域通信网络中, 直接测量技术可获得准确的端到端网络流量信息。但跨域网络中部分节点的低算力和低存储特性, 影响了所有节点运行网络流量测量进程。针对此, 文中提出一种基于元学习与近端策略优化的网络流量测量优化方法, 该方法根据上一时隙网络运行环境, 来确定下一时隙执行网络流量测量的节点集合, 目标是在尽可能少的节点上执行测量进程从而获取尽可能多的网络流量信息。文中同时通过3个网络数据集对所提方法进行仿真验证, 实验结果表明基于元学习和强化学习的跨域自组织网络流量测量优化算法可以有效选择流经流量大的节点, 具有较快的收敛速度和测量效率。

     

  • 图  1  跨域自组织网络示意图

    Figure  1.  Schematic diagram of cross-domain Ad Hoc network

    图  2  网络流量测量优化示意图

    Figure  2.  Schematic diagram of network traffic measurement optimization

    图  3  强化学习示意图

    Figure  3.  Schematic diagram of reinforcement learning

    图  4  PPO算法流程图

    Figure  4.  Flow chart of PPO algorithm

    图  5  强化学习MAML算法(算法1)流程图

    Figure  5.  Flow chart of reinforcement learning MAML algorithm(algorithm 1)

    图  6  基于元学习和PPO算法的网络流量测量优化算法 (算法2)流程图

    Figure  6.  Flow chart of network traffic measurement optimization algorithm based on meta-learning and PPO algorithm (algorithm 2)

    图  7  基于元学习与PPO的流量测量优化方法示意图

    Figure  7.  Schematic diagram of traffic measurement optimization method based on meta-learning and PPO

    图  8  Abilene网络拓扑结构图

    Figure  8.  Topological structure of Abilene network

    图  9  GÉANT网络拓扑结构图

    Figure  9.  Topological structure of GÉANT network

    图  10  NS3仿真节点移动场景

    Figure  10.  NS3 simulation node movement scene

    图  11  不同网络中3种方法仿真结果比较

    Figure  11.  Comparison of simulation results of three methods in different networks

    图  12  不同网络中2种方法仿真结果比较

    Figure  12.  Comparison of simulation results of two methods in different networks

    图  13  在无线自组织网络中元学习与正态分布初始参数训练结果对比图

    Figure  13.  Comparison of meta-learning and normal distribution initial parameter training results in wireless ad hoc networks

    表  1  NS3仿真无线自组织网络参数

    Table  1.   Parameters of NS3 simulated wireless ad hoc network

    参数数值
    节点个数$7 \times 7$
    网络运行时间2700 s
    移动模型高斯马尔可夫模型
    网络移动边界限制在$450 \times 450 \times 20$的长方体内
    单个节点移动边界限制在$50 \times 50 \times 20$的长方体内
    下载: 导出CSV

    表  2  基于元学习与PPO网络的测量优化结构参数

    Table  2.   Structural parameters for measurement optimization based on meta-learning with PPO network

    模型层级参数值
    策略网络输入层神经单元个数: M
    (M表示OD流总数)
    FC-1、FC-2、
    FC-3: 全连接层
    神经单元个数: 100
    激活函数: ReLU函数
    输出层神经单元个数: N
    (N表示节点个数)
    激活函数: SoftMax函数
    评价网络输入层神经单元个数: M
    FC-1、FC-2、
    FC-3: 全连接层
    神经单元个数: 100
    激活函数: ReLU函数
    输出层神经单元个数: 1(奖励值)
    下载: 导出CSV

    表  3  仿真过程涉及关键参数

    Table  3.   Key parameters involved in the simulation process

    参数数值
    动作网络学习率0.000 1
    评论网络学习率0.000 1
    奖励衰退因子$ \gamma $0.9
    PPO中截断范围的参数0.2
    优势函数的缩放因子0.95
    经验回放池大小200
    内层训练轮数10
    外层训练轮数40
    下载: 导出CSV
  • [1] RAMPHULL D, MUNGUR A, ARMOOGUM S, et al. A review of mobile ad hoc network(MANET) protocols and their applications[C]//2021 5th International Conference on Intelligent Computing and Control Systems(ICICCS). Chongqing, China: IEEE, 2021: 204-211.
    [2] CHO J H, SWAMI A, CHEN R. A survey on trust management for mobile ad hoc networks[J]. IEEE Communications Surveys & Tutorials, 2010, 13(4): 562-583.
    [3] Conti M, Giordano S. Mobile ad hoc networking: milestones, challenges, and new research directions[J]. IEEE Communications Magazine, 2014, 52(1): 85-96. doi: 10.1109/MCOM.2014.6710069
    [4] HAMDI M M, AUDAH L, RASHID S A, et al. A review of applications, characteristics and challenges in vehicular ad hoc networks(VANETs)[C]//2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications(HORA). Ankara, Turkey: IEEE, 2020: 1-7.
    [5] JHAVERI R H, PATEL S J, JINWALA D C. DoS attacks in mobile ad hoc networks: A survey[C]//2012 Second International Conference on Advanced Computing & Communication Technologies. Rohtak, India: IEEE, 2012: 535-541.
    [6] SAHINGOZ O K. Networking models in flying ad-hoc networks(FANETs): Concepts and challenges[J]. Journal of Intelligent & Robotic Systems, 2014, 74: 513-527.
    [7] CLEMM A, ZHANI M F, BOUTABA R. Network management 2030: Operations and control of network 2030 services[J]. Journal of Network and Systems Management, 2020, 28(4): 721-750. doi: 10.1007/s10922-020-09517-0
    [8] FATIMA M, KHURSHEED A. Heterogeneous ad-hoc network management: An overview[J]. Cloud Computing Enabled Big-Data Analytics in Wireless Ad-Hoc Networks, 2022: 103-123.
    [9] GHODE S D, BHOYAR K K. NEMA: node energy monitoring algorithm for zone head selection in mobile ad-hoc network using residual battery power of node[C]//2016 International Conference on Wireless Communications, Signal Processing and Networking(WiSPNET). Chennai, India: IEEE, 2016: 1999-2004.
    [10] SALSANO S, PATRIARCA F, PRESTI F L, et al. Accurate and efficient measurements of IP level performance to drive interface selection in heterogeneous wireless networks[J]. IEEE Transactions on Mobile Computing, 2018, 17(10): 2223-2235. doi: 10.1109/TMC.2018.2807842
    [11] YU Y, NING Z, SONG Q, et al. A dynamic cooperative monitor node selection algorithm in wireless mesh networks[C]//2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems. New York, NY, USA: IEEE, 2015: 1800-1805.
    [12] YU Y, GUO L, HUANG J, et al. A cross-layer security monitoring selection algorithm based on traffic prediction[J]. IEEE Access, 2018, 6: 35382-35391. doi: 10.1109/ACCESS.2018.2851993
    [13] PHAN X T, MARTINEZ-CASANUEVA I D, FUKUDA K. Adaptive and distributed monitoring mechanism in software-defined networks[C]//2017 13th International Conference on Network and Service Management (CNSM). Tokyo, Japan: IEEE, 2017: 1-5.
    [14] SHIN D H, BAGCHI S, WANG C C. Toward optimal distributed monitoring of multi-channel wireless networks[J]. IEEE Transactions on Mobile Computing, 2015, 15(7): 1826-1838.
    [15] BOUHTOU M, KLOPFENSTEIN O. Robust optimization for selecting netflow points of measurement in an ip network[C]// IEEE GLOBECOM 2007-IEEE Global Telecommunications Conference. Washington, DC, USA: IEEE, 2007: 2581-2585.
    [16] NIE L, WANG H, JIANG X, et al. Traffic measurement optimization based on reinforcement learning in large-scale its-oriented backbone networks[J]. IEEE Access, 2020, 8: 36988-36996. doi: 10.1109/ACCESS.2020.2975238
    [17] ABURUMMAN A, SEO W J, ISLAM R, et al. A secure cross-domain sip solution for mobile ad hoc network using dynamic clustering[C]//Security and Privacy in Communication Networks: 11th EAI International Conference, SecureComm 2015, Dallas, TX, USA: Springer International Publishing, 2015: 649-664.
    [18] YANG Y, WU J, LONG C, et al. A blockchain-based cross-domain authentication for conditional privacy preserving in vehicular ad-hoc network[C]//2021 The 3rd International Conference on Blockchain Technology. Shanghai, China: Association for Computing Machinery, 2021: 183-188.
    [19] Li S E. Deep reinforcement learning[M]//Reinforcement Learning for Sequential Decision and Optimal Control. Singapore: Springer Nature Singapore, 2023: 365-402.
    [20] OROOJLOOY A, HAJINEZHAD D. A review of cooperative multi-agent deep reinforcement learning[J]. Applied Intelligence, 2023, 53(11): 13677-13722. doi: 10.1007/s10489-022-04105-y
    [21] YU C, VELU A, VINITSKY E, et al. The surprising effectiveness of ppo in cooperative multi-agent games[J]. Advances in Neural Information Processing Systems, 2022, 35: 24611-24624.
    [22] HOSPEDALES T, ANTONIOU A, MICAELLI P, et al. Meta-Learning in neural networks: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(9): 5149-5169.
    [23] WANG J, HU J, MIN G, et al. Fast adaptive task offloading in edge computing based on meta reinforcement learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 32(1): 242-253.
    [24] JEONG T, KIM H. OOD-MAML: Meta-learning for few-shot out-of-distribution detection and classification[J]. Advances in Neural Information Processing Systems, 2020, 33: 3907-3916.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  14
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-28
  • 修回日期:  2024-07-05
  • 录用日期:  2024-07-15
  • 网络出版日期:  2024-07-16

目录

    /

    返回文章
    返回
    服务号
    订阅号