• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨介质动力学及无人系统前沿技术进展

王聪 许海雨 马贵辉 孙龙泉

王聪, 许海雨, 马贵辉, 等. 跨介质动力学及无人系统前沿技术进展[J]. 水下无人系统学报, 2024, 32(3): 1-12 doi: 10.11993/j.issn.2096-3920.2024-0060
引用本文: 王聪, 许海雨, 马贵辉, 等. 跨介质动力学及无人系统前沿技术进展[J]. 水下无人系统学报, 2024, 32(3): 1-12 doi: 10.11993/j.issn.2096-3920.2024-0060
WANG Cong, XU Haiyu, MA Guihui, SUN Longquan. Trans-Medium Dynamics and Cutting-Edge Technology Progress in Unmanned Systems[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0060
Citation: WANG Cong, XU Haiyu, MA Guihui, SUN Longquan. Trans-Medium Dynamics and Cutting-Edge Technology Progress in Unmanned Systems[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0060

跨介质动力学及无人系统前沿技术进展

doi: 10.11993/j.issn.2096-3920.2024-0060
基金项目: 国防基础科研项目资助(JCKY2021604B028).
详细信息
    通讯作者:

    许海雨, 男, 助理研究员, E-mail: xuhaiyu_hn@163.com.

  • 中图分类号: U674.941; V279

Trans-Medium Dynamics and Cutting-Edge Technology Progress in Unmanned Systems

  • 摘要: 近年来跨介质装备受到船舶与海洋、航空航天以及兵器等领域的高度重视, 与跨介质飞行器及无人系统相关的总体方案、关键技术、研究方法以及使用效能等成为研究热点。文章阐述了跨介质动力学及无人系统相关研究背景, 综述了航行体入水砰击、航行体出入水流固耦合、跨介质仿生、跨介质动力与推进、新质跨介质装备、跨介质动力学试验与仿真技术等方面的最新研究成果和研究进展, 并展望了跨介质飞行器发展需要解决的若干前沿关键技术。

     

  • 图  1  不同入水速度下AUV冲击加速度随时间变化曲线

    Figure  1.  Curves of impact acceleration of the AUV at different velocities

    图  2  弹性球体入水变形及其诱导空泡形态

    Figure  2.  The deformation of elastic sphere and its induced cavity geometry during water entry

    图  3  超空泡射弹振荡过程的形变及沾湿状态

    Figure  3.  Deformation of supercavitating projectile and wetted status in vibration divergence stage

    图  4  航行体破冰入水空泡演化

    Figure  4.  Evolution of cavity shape during ice breaking

    图  5  环形槽类截头尖拱体物理模型

    Figure  5.  Contour of the annular groove truncated vehicle

    图  6  带尾裙跨介质航行器模型

    Figure  6.  Trans-medium vehicle with tail-skirt

    图  7  新型前垂直舵流体动力布局

    Figure  7.  Schematic of the proposed hydrodynamic layout of the front vertical rudders

    图  8  空泡形态演变

    Figure  8.  Development process of the cavity

    图  9  仿飞鱼构型

    Figure  9.  Constructed prototype of flying fish

    图  10  水-空跨介质航行器仿生结构设计图

    Figure  10.  Bionics design diagrams of water-air trans-medium vehicles

    图  11  测试平台

    Figure  11.  Schematic of the testing device

    图  12  高速入水试验

    Figure  12.  High-speed water entry testing

  • [1] 唐胜景. 跨介质飞行器关键技术及飞行动力学研究趋势分析[J]. 飞航导弹, 2021(6): 7-13.
    [2] 李超, 吕日毅, 钱仁军, 等. 美跨介质飞行器技术发展与运用研究[J]. 战术导弹技术, 2023(6): 120-127.
    [3] 何肇雄, 郑震山, 马东立, 等. 国外跨介质飞行器发展历程及启示[J]. 舰船科学技术, 2016, 38(9): 152-157. doi: 10.3404/j.issn.1672-7619.2016.05.032

    He Zhaoxiong, Zheng Zhenshan, Ma Dongli, et al. Development of foreign trans-media aircraft and its enlightenment to China[J]. Ship Science and Technology, 2016, 38(9): 152-157. doi: 10.3404/j.issn.1672-7619.2016.05.032
    [4] 侯涛刚, 靳典哲, 龚毓琰, 等. 水空跨介质航行器前沿技术进展[J]. 科技导报, 2023, 41(2): 5-22.

    Hou Taogang, Jin Dianzhe, Gong Yuyan, et al. Frontier technology analysis and future prospects of aquatic un-manned aerial vehicle[J]. Science & Technology Review, 2023, 41(2): 5-22.
    [5] 张军, 曹耀初, 高德宝, 等. 水下-空中跨介质航行器研究进展[C]//协同创新砥砺奋进—船舶力学学术委员会第九次全体会议文集. 无锡: 中国造船工程学会, 2018.
    [6] 姚熊亮, 赵斌, 马贵辉. 跨介质航行体出水问题研究现状与展望[J/OL]. 航空学报, 2023, 1-27. https://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2023.29598.
    [7] 王聪, 许海雨, 卢佳兴. 跨介质航行器入水多相流场及运动特性研究现状与展望[J]. 水下无人系统学报, 2023, 31(1): 38-49. doi: 10.11993/j.issn.2096-3920.2022-0082

    Wang Cong, Xu Haiyu, Lu Jiaxing. Status and prospects of investigation into multiphase flow field and motion characteristics of trans-medium vehicles during water entry[J]. Unmanned Undersea Vehicle, 2023, 31(1): 38-49. doi: 10.11993/j.issn.2096-3920.2022-0082
    [8] 辛万青. 跨介质航行体流体动力调控研究进展及新构想[J]. 导弹与航天运载技术, 2021(6): 1-6.

    Xin Wanqing. A progress review and new methodology of the hydrodynamic control for cross-medium vehicles[J]. Missiles and Space Vehicles, 2021(6): 1-6.
    [9] 史崇镔. 跨介质结构物出入水多相流体动力学特性研究[D]. 大连: 大连理工大学, 2021.
    [10] 陈怀远. 跨介质飞行器设计及流体动力学特性分析[D]. 南京: 南京航空航天大学, 2019.
    [11] Yan G X, Pan G, Shi Y, et al. Experimental and numerical investigation of water impact on air-launched AUVs[J]. Ocean Engineering, 2018, 167: 156-168. doi: 10.1016/j.oceaneng.2018.08.044
    [12] Shi Y, Pan G, Yim C S, et al. Numerical investigation of hydroelastic water-entry impact dynamics of AUVs[J]. Journal of Fluids and Structures, 2019, 91: 102760. doi: 10.1016/j.jfluidstructs.2019.102760
    [13] Shi Y, Gao X, Pan G. Experimental and numerical investigation of the frequency-domain characteristics of impact load for AUV during water entry[J]. Ocean Engineering, 2020, 202: 107203. doi: 10.1016/j.oceaneng.2020.107203
    [14] Liu Z P, Shi Y, Wu K, et al. Experimental study on load characteristics of vehicle during high-speed water entry[J]. Ocean Engineering, 2023, 288: 116052. doi: 10.1016/j.oceaneng.2023.116052
    [15] Chaudhry A Z, Shi Y, Pan G, et al. Mechanical characterization of flat faced deformable AUV during water entry impact considering the hydroelastic effects[J]. Applied Ocean Research, 2021, 115: 102849. doi: 10.1016/j.apor.2021.102849
    [16] 杨柳. 超弹性球体垂直入水空泡流动及结构响应特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
    [17] Sun T Z, Zhou L, Yin Z H, et al. Cavitation bubble dynamics and structural loads of high-speed water entry of a cylinder using fluid-structure interaction method[J]. Applied Ocean Research, 2020, 101: 102285. doi: 10.1016/j.apor.2020.102285
    [18] 高英杰. 基于流固耦合方法的回转体高速入水流场及载荷特性研究[D]. 大连: 大连理工大学, 2020.
    [19] Zhang G Y, Feng S, Zhang Z F, et al. Investigation of hydroelasticity in water entry of flexible wedges with flow detachment[J]. Ocean Engineering, 2021, 222: 1-13.
    [20] Xia S S, Wei Y J, Wang C. Analysis of high-speed water entry in semi-sealed cylindrical shells: Cavity formation and self-disturbance characteristics[J]. Ocean Engineering, 2023, 288: 116177. doi: 10.1016/j.oceaneng.2023.116177
    [21] 郝常乐, 党建军, 陈长盛, 等. 基于双向流固耦合的超空泡射弹入水研究[J]. 力学学报, 2022, 54(3): 678-687. doi: 10.6052/0459-1879-21-510
    [22] Huang C, Liu Z, Liu Z X, et al. Motion characteristics of high-speed supercavitating projectiles including structural deformation[J]. Energies, 2022, 15(5): 1933. doi: 10.3390/en15051933
    [23] 侯宇, 黄振贵, 郭则庆, 等. 超空泡射弹小入水角高速斜入水试验研究[J]. 兵工学报, 2020, 41(2): 332-341. doi: 10.3969/j.issn.1000-1093.2020.02.015

    Hou Yu, Huang Zhengui, Guo Zeqing, et al. Experimental investigation on shallow-angle oblique water-entry of a high-speed supercavitating projectile[J]. Acta Armamentarii, 2020, 41(2): 332-341. doi: 10.3969/j.issn.1000-1093.2020.02.015
    [24] 黄振贵, 范浩伟, 陈志华, 等. 空心弹高速入水机理及特性数值模拟研究[J]. 爆炸与冲击, 2024, 44(1): 117-131. doi: 10.11883/bzycj-2023-0156

    Huang Zhengui, Fan Haowei, Chen Zhihua, et al. Numerical simulation study on the mechanism and characteristics of highspeed water entry of hollow projectiles[J]. Explosion and Shock Waves, 2024, 44(1): 117-131. doi: 10.11883/bzycj-2023-0156
    [25] Wang H, Luo Y, Chen Z, et al. Influences of ice-water mixture on the vertical water-entry of a cylinder at a low velocity[J]. Ocean Engineering, 2022, 256: 111464. doi: 10.1016/j.oceaneng.2022.111464
    [26] Wang H, Huang Z G, Huang D, et al. Influences of floating ice on the vertical water entry process of a trans-media projectile at high speeds[J]. Ocean Engineering, 2022, 265(4): 112548.
    [27] Dong Q, Zhao X, Huang B, et al. Acoustic-gravity waves induced by vortices horizontally moving underwater[J]. Acta Mech. Sin., 2024, 40(2): 323289. doi: 10.1007/s10409-023-23289-x
    [28] 张润东, 段金雄, 孙铁志, 等. 自由面碎冰浮冰环境高速入水动力学特性[J]. 空气动力学学报, 2024, 42(1): 100-112. doi: 10.7638/kqdlxxb-2023.0191

    Zhang Rundong, Duan Jinxiong, Sun Tiezhi, et al. Dynamic characteristics of high-speed water entry in the environment of free water surface with crushed ice[J]. Acta Aerodynamica Sinica, 2024, 42(1): 100-112. doi: 10.7638/kqdlxxb-2023.0191
    [29] 朱睿, 张焕彬, 庄启彬, 等. 跨介质弹体出水稳定性[J]. 北京理工大学学报, 2023, 43(1): 45-53.

    Zhu Rui, Zhang Huanbin, Zhuang Qibin, et al. Water-to-air stability of trans-phase missile[J]. Transactions of Beijing institute of Technology, 2023, 43(1): 45-53.
    [30] 田盎. 超空泡航行体高速入水过程缓冲结构降载特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
    [31] 李永利, 刘安, 冯金富, 等. 航行器小角度入水跳弹过程研究[J]. 兵工学报, 2016, 37(10): 1860-1872. doi: 10.3969/j.issn.1000-1093.2016.10.013

    Li Yongli, Liu An, Feng Jinfu, et al. Research on ricochet process of small-angle water-entry vehicle[J]. Acta Armamentarii, 2016, 37(10): 1860-1872. doi: 10.3969/j.issn.1000-1093.2016.10.013
    [32] 袁绪龙, 朱珠. 预置舵角对高速入水弹道和流体动力的影响[J]. 应用力学学报, 2015, 32(1): 11-16,168. doi: 10.11776/cjam.32.01.A001

    Yuan Xulong, Zhu Zhu. Influence of preset rudder angle on trajectory and hydro-dynamic at high-speed water-entry[J]. Chinese Journal of Applied Mechanics, 2015, 32(1): 11-16,168. doi: 10.11776/cjam.32.01.A001
    [33] 时素果, 王亚东, 刘乐华, 等. 预置舵角下超空泡航行体运动过程弹道特性研究[J]. 兵工学报, 2017, 38(10): 1974-1979. doi: 10.3969/j.issn.1000-1093.2017.10.013

    Shi Suguo, Wang Yadong, Liu Lehua, et al. Research on the trajectory characteristics of supercavitating vehicle at preset rudder angle[J]. Acta Armamentarii, 2017, 38(10): 1974-1979. doi: 10.3969/j.issn.1000-1093.2017.10.013
    [34] 陈诚, 袁绪龙, 邢晓琳, 等. 预置舵角下超空泡航行体倾斜入水弹道特性研究[J]. 兵工学报, 2018, 39(9): 1780-1785. doi: 10.3969/j.issn.1000-1093.2018.09.015

    Chen Cheng, Yuan Xulong, Xing Xiaolin, et al. Research on the trajectory characteristics of supercavitating vehicle obliquely entering into water at preset rudder angle[J]. Acta Armamentarii, 2018, 39(9): 1780-1785. doi: 10.3969/j.issn.1000-1093.2018.09.015
    [35] 刘喜燕, 袁绪龙, 罗凯, 等. 预置舵角对跨介质航行体入水尾拍运动影响试验[J]. 兵工学报, 2023, 44(6): 1632-1642. doi: 10.12382/bgxb.2022.1117

    Liu Xiyan, Yuan Xulong, Luo Kai, et al. Experimental investigation of the influence of preset rudder angle on tail-slapping of a trans-media vehicle during water entry[J]. Acta Armamentarii, 2023, 44(6): 1632-1642. doi: 10.12382/bgxb.2022.1117
    [36] 刘喜燕, 袁绪龙, 罗凯, 等. 带尾裙跨介质航行体高速斜入水实验研究[J]. 爆炸与冲击, 2023, 43(11): 108-120. doi: 10.11883/bzycj-2022-0509

    Liu Xiyan, Yuan Xulong, Luo Kai, et al. Experimental study on high-velocity oblique water entry of a trans-media vehicle with tail-skirt[J]. Explosion and Shock Waves, 2023, 43(11): 108-120. doi: 10.11883/bzycj-2022-0509
    [37] Shi Y, Hua Y, Pan G. Experimental study on the trajectory of projectile water entry with asymmetric nose shape[J]. Physics of Fluids, 2020, 32(12): 122119. doi: 10.1063/5.0033906
    [38] 华扬, 施瑶, 潘光, 等. 非对称头型航行器入水空泡形态与弹道特性的实验研究[J]. 西北工业大学学报, 2021, 39(6): 1249-1258. doi: 10.3969/j.issn.1000-2758.2021.06.010

    Hua Yang, Shi Yao, Pan Guang, et al. Experimental study on water-entry cavity and trajectory of vehicle with asymmetric nose shape[J]. Journal of Northwestern Polytechnical University, 2021, 39(6): 1249-1258. doi: 10.3969/j.issn.1000-2758.2021.06.010
    [39] 唐楚淳, 黄振贵, 陈志华, 等. 斜截体头型弹丸低速垂直入水实验研究[J]. 兵工学报, 2020, 41(S1): 54-58.

    Tang Chuchun, Huang Zhengui, Chen Zhihua, et al. Experimental study of the low-speed vertical water entry process of oblique head projectile[J]. Acta Armamentarii, 2020, 41(S1): 54-58.
    [40] 宋立, 于海月, 介百冰, 等. 非对称头部运动体低速垂直入水试验研究[J]. 兵器装备工程学报, 2021, 42(3): 35-39,44. doi: 10.11809/bqzbgcxb2021.03.006

    Song Li, Yu Haiyue, Jie Baibing, et al. Experimental study of low speed vertical water entry with moving object of asymmetric head type[J]. Journal of Ordnance Equipment Engineering, 2021, 42(3): 35-39,44. doi: 10.11809/bqzbgcxb2021.03.006
    [41] 孙杨. 非对称头型运动体入水多相流动特性及运动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
    [42] Wang X H, Shi Y, Pan G, et al. Numerical research on the high-speed water entry trajectories of AUVs with asymmetric nose shapes[J]. Ocean Engineering, 2021, 234: 109274. doi: 10.1016/j.oceaneng.2021.109274
    [43] Yu Y, Shi Y, Pan G, et al. Effect of asymmetric nose shape on the cavity and mechanics of projectile during high-speed water entry[J]. Ocean engineering, 2022, 266: 112983. doi: 10.1016/j.oceaneng.2022.112983
    [44] Li D J, Li F J, Shi Y Z, et al. A novel hydrodynamic layout of front vertical rudders for maneuvering underwater supercavitating vehicles[J]. Ocean Engineering, 2020, 215: 107894. doi: 10.1016/j.oceaneng.2020.107894
    [45] Akbari M A, Mohammadi J, Fereidooni J. A dynamic study of the high-speed oblique water entry of a stepped cylindrical-cone projectile[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(1): 1-15. doi: 10.1007/s40430-020-02713-8
    [46] 祁晓斌, 施瑶, 刘喜燕, 等. 阶梯式圆柱射弹小角度入水弹道特性研究[J]. 力学学报, 2023, 55(11): 2468-2479. doi: 10.6052/0459-1879-23-212

    Qi Xiaobin, Shi Yao, Liu Xiyan, et al. Study on trajectory characteristics of stepped cylindrical projectile entering water at small angle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2468-2479. doi: 10.6052/0459-1879-23-212
    [47] 马贵辉. 等压排气改善潜射航行体出水特性及稳健性机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
    [48] 邵冬. 跨介质飞航器动力分析[J]. 航空动力, 2020(1): 12-15.

    Shao Dong. Analysis to the power system of trans-media vehicle[J]. Aerospace Power, 2020(1): 12-15.
    [49] 吕达, 苏浩秦, 李筠, 等. 变形仿生飞翼跨介质无人机外形设计与航行仿真[J]. 兵器装备工程学报, 2022, 43(12): 59-66. doi: 10.11809/bqzbgcxb2022.12.009

    Lü Da, Su Haoqin, Li Yun, et al. Configuration design and navigation simulation of deformable bionic flying-wing aerial-aquatic unmanned vehicles[J]. Journal of Ordnance Equipment Engineering, 2022, 43(12): 59-66. doi: 10.11809/bqzbgcxb2022.12.009
    [50] 李宏源, 吕凯, 陈迎亮, 等. 新型仿生水-空跨介质航行器结构设计[J]. 水下无人系统学报, 2022, 30(6): 726-732. doi: 10.11993/j.issn.2096-3920.2022-0024

    Li Hongyuan, Lü Kai, Chen Yingliang, et al. Structure design of a novel bionic water-air cross-domain vehicle[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 726-732. doi: 10.11993/j.issn.2096-3920.2022-0024
    [51] 高勇刚, 刘洋, 余晓京, 等. 固体火箭燃气超燃冲压发动机燃烧组织技术研究[J]. 推进技术, 2019, 40(1): 140-150.

    Gao Yonggang, Liu Yang, Yu Xiaojing, et al. research on combustion organization technology of the solid rocket fuel gas scramjet[J]. Journal of Propulsion Technology, 2019, 40(1): 140-150.
    [52] 吴佳明, 杨玉新, 王纵涛, 等. 粉末发动机推进剂供料研究现状及展望[J]. 航空动力学报, 2024, 39(3): 219-228.

    Wu Jiaming, Yang Yuxin, Wang Zongtao, et al. Research progresses and prospect of powdered fuel engine propellant feeding[J]. Journal of Aerospace Power, 2024, 39(3): 219-228.
    [53] 段艳娟, 杨玉新, 黄礼铿, 等. 燃料预加热对超声速剪切掺混的增强效果[J]. 南京航空航天大学学报, 2023, 55(5): 827-838.

    Duan Yanjuan, Yang Yuxin, Huang Likeng, et al. Enhancement effect of fuel preheating on supersonic shear mixing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(5): 827-838.
    [54] 刘平安, 常浩, 李树声, 等. 含铝复合推进剂分布燃烧数值模拟[J]. 固体火箭技术, 2018, 41(2): 156-161,168. doi: 10.7673/j.issn.1006-2793.2018.02.004

    Liu Pingan, Chang Hao, Li Shusheng, et al. Numerical simulation of distributed combustion of the aluminized composite propellant[J]. Journal of Solid Rocket Technology, 2018, 41(2): 156-161,168. doi: 10.7673/j.issn.1006-2793.2018.02.004
    [55] 刘平安, 王良, 王璐. 固体火箭发动机零维两相燃烧室压强计算方法研究[J]. 推进技术, 2018, 39(2): 317-325.

    Liu Pingan, Wang Liang, Wang Lu. Research of two phase 0-D chamber pressure prediction method for solid rocket motor[J]. Journal of Propulsion Technology, 2018, 39(2): 317-325.
    [56] Gao A, Techet A H. Design considerations for a robotic flying fish[C]//OCEANS'11 MTS/IEEE KONA. Waikoloa, HI, US: IEEE, 2011.
    [57] Liang J B, Yang X, Wang T M, et al. Design and experiment of a bionic gannet for plunge-diving[J]. Journal of Bionic Engineering, 2013, 10(3): 282-291. doi: 10.1016/S1672-6529(13)60224-3
    [58] 姜琬, 贾重任, 卢芳春. 仿生系列跨介质新概念飞行器气水动布局设计[C]//第六届中国航空学会青年科技论坛文集(上册). 沈阳: 中国航空学会, 2014.
    [59] 史崇镔, 张桂勇, 孙铁志, 等. 跨介质航行器波浪环境入水流场演变和运动特性研究[J]. 宇航总体技术, 2020, 4(3): 34-44.

    Shi Chongbin, Zhang Guiyong, Sun Tiezhi, et al. Study on the flow field evolution and motion characteristics of trans-media vehicle under wave conditions[J]. Astronautical Systems Engineering Technology, 2020, 4(3): 34-44.
    [60] 廖保全, 冯金富, 齐铎, 等. 一种可变形跨介质航行器气动/水动特性分析[J]. 飞行力学, 2016, 34(3): 44-57.

    Liao Baoquan, Feng Jinfu, Qi Duo, et al. Aerodynamic and hydrodynamic characteristics analysis of morphing submersible aerial vehicle[J]. Flight Dynamics, 2016, 34(3): 44-57.
    [61] 李宏源, 吕凯, 陈迎亮, 等. 新型仿生水-空跨介质航行器结构设计[J]. 水下无人系统学报, 2022, 30(6): 726-732. doi: 10.11993/j.issn.2096-3920.2022-0024
    [62] Hu J H, Xu B W, Feng J F, et al. Research on Water-Exit and Take-off Process for Morphing Unmanned Submersible Aerial Vehicle[J]. China Ocean Engineering, 2017, 31(02): 202-209. doi: 10.1007/s13344-017-0024-3
    [63] 周航宇, 魏照宇, 祝发勋, 等. 海空跨域航行器研究现状及关键力学问题[J]. 力学与实践, 2024, 1-8.
    [64] Dong L, Ding W, Wei Z, et al. Numerical study on the water entry of two-dimensional airfoils by BEM[J]. Engineering Analysis with Boundary Elements, 2023, 151: 83-100. doi: 10.1016/j.enganabound.2023.02.054
    [65] 侯东伯. 运动体触水滑跳过程运动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
    [66] Li C H, Wang C, Wei Y J, et al. Three-dimensional numerical simulation of cavity dynamics of a stone with different spinning velocities[J]. International Journal of Multiphase Flow, 2020, 129: 103339. doi: 10.1016/j.ijmultiphaseflow.2020.103339
    [67] Li C H, Wang C, Wei Y J, et al. Numerical investigation on the cavity dynamics and deviation characteristics of skipping stones[J]. Journal of Fluids and Structures, 2021, 104: 103301. doi: 10.1016/j.jfluidstructs.2021.103301
    [68] 李良博, 杨宇, 梁爽, 等. 水空两栖多旋翼飞行器出水控制及参数整定[J]. 舰船科学技术, 2023, 45(07): 85-92. doi: 10.3404/j.issn.1672-7649.2023.07.018
    [69] 赵英杰. 小型无人跨介质航行器结构设计及动力学特性分析与仿真[D]. 哈尔滨: 哈尔滨工程大学, 2021.
    [70] 徐仁, 鞠世琦, 詹祺, 等. 旋翼跨介质试验系统设计与性能实验研究[J]. 飞行力学, 2023: 1-6.
    [71] 张硕, 张树新, 代季鹏. 小型跨介质无人机快速水空过渡设计与试验[J]. 飞行力学, 2021, 39(05): 77-81.
    [72] Fan S, Shi D, Ma G, et al. Research on similarity of water entry load for scaled-down underwater vehicle based on different model test environments[J], Ocean Engineering, 2023, 286: 115697.
    [73] Yao X, Yang Z, Ma G, et al. Research on the characteristics and similarity relationships of impact load reduction of a vehicle entering water[J], Applied Ocean Research, 2024, 142: 103814.
    [74] 李宜果, 王聪, 武雨嫣, 等. 跨介质航行体高速入水空泡壁面运动特性[J]. 兵工学报, 2022, 43(03): 574-585. doi: 10.12382/bgxb.2021.0145
    [75] 孙士明. 超空泡射弹小角度高速入水运动稳定机理研究[D]. 无锡: 中国舰船研究院, 2023.
    [76] Lv Y, Huang B, Liu T, et al. The flow characteristics for gas jet in liquid crossflow with special emphasis on the vortex-cavity interaction[J]. European Journal of Mechanics - B/Fluids, 2024, 104: 136-49. doi: 10.1016/j.euromechflu.2023.12.002
    [77] Zhang H-S, Huang B, Zhao X. Numerical investigation of wave-cylinder interaction based on a momentum source wave generation method[J]. Ocean Engineering, 2023, 288: 115893. doi: 10.1016/j.oceaneng.2023.115893
    [78] 胡汉铎, 宋彦萍, 俞建阳, 等. 翼型不确定性量化中正交匹配追踪的应用[J]. 航空学报, 2023, 44(18): 124-136.
    [79] 俞建阳. 带栅格翼的水下航行体三维流场数值模拟[D]. 哈尔滨: 滨工业大学, 2012.
    [80] 管祥善, 孙鹏楠, 李江昊, 等. 基于光滑粒子流体动力学的波浪中航行体入水数值模拟[J]. 空气动力学学报, 2024, 42(2): 85-95. doi: 10.7638/kqdlxxb-2023.0080

    Guan Xiangshan, Sun Pengnan, Li Jianghao, et al. Numerical simulation of the water entry of projectiles in waves based on SPH method[J]. Acta Aerodynamica Sinica, 2024, 42(2): 85-95. doi: 10.7638/kqdlxxb-2023.0080
    [81] Huang X T, Sun Pengnan, Lü Hongguan, et al. Water entry problems simulated by an axisymmetric SPH model with VAS scheme[J]. Journal of Marine Science and Application, 2022, 21(2): 1-15. doi: 10.1007/s11804-022-00265-y
    [82] 贺永圣. 仿生跨介质飞行器水气动布局融合设计及出水特性分析[D]. 长春: 吉林大学, 2021.
    [83] 李宏源, 邹勇, 邹宇城, 等. 仿生水-空跨介质航行器控制系统研究[J]. 舰船科学技术, 2023, 45(20): 79-82. doi: 10.3404/j.issn.1672-7649.2023.20.014

    Li Hongyuan, Zou Yong, Zou Yucheng, et al. Research on control system of bionic water-air cross domain vehicle[J]. Ship Science and Technology, 2023, 45(20): 79-82. doi: 10.3404/j.issn.1672-7649.2023.20.014
    [84] 崔佳鹏, 吴宇, 苟进展. 四轴八旋翼无人机入水轨迹优化方法研究[J]. 无人系统技术, 2022, 5(3): 50-63.

    Cui Jiangpeng, Wu Yu, Gou Jinzhan. Trajectory optimization of coaxial eight-rotor vehicle dividing into water[J]. Unmanned Systems Technology, 2022, 5(3): 50-63.
    [85] 刘方, 肖金石, 韦建明, 等. 水下连续发射弹体干扰特性及发射时序优化[J]. 兵工学报, 2024, 45(1): 197-205.

    Liu Fang, Xiao Jinshi, Wei Jianming, et al. Interference characteristics and launch sequence optimization of projectiles launched successively underwater[J]. Acta Armamentarii, 2024, 45(1): 197-205.
    [86] 方尔正, 李宗儒, 桂晨阳. 穿海牵天 提升对潜通信保障能力—跨介质通信技术现状及展望[J]. 国防科技工业, 2022(2): 59-62.
    [87] 刘东林, 曾彬, 钟宏伟, 等. 海上跨介质通信技术发展分析[J]. 舰船科学技术, 2022, 44(24): 62-66. doi: 10.3404/j.issn.1672-7649.2022.24.013

    Liu Donglin, Zeng Bin, Zhong Hongwei, et al. A brief analysis on the development of cross-media communication technology[J]. Ship Science and Technology, 2022, 44(24): 62-66. doi: 10.3404/j.issn.1672-7649.2022.24.013
    [88] 何奇毅, 宗思光. 跨空水介质激光声技术发展分析与思考[J]. 激光与红外, 2019, 49(1): 3-8. doi: 10.3969/j.issn.1001-5078.2019.01.001

    He Qiyi, Zong Siguang. Analysis and thinking about the development of air and water crossed laser acoustic technology[J]. Laser & Infrared, 2019, 49(1): 3-8. doi: 10.3969/j.issn.1001-5078.2019.01.001
    [89] 赵兴康. 基于声学-光学体制的水空跨介质通信仿真及算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
    [90] 朱睿超, 高俊奇, 毛智能, 等. 基于磁感应的跨介质通信技术研究[J]. 数字海洋与水下攻防, 2022, 5(4): 335-341.

    Zhu Ruichao, Gao Junqi, Mao Zhineng, et al. Research on cross-medium communication technology based on magnetic induction[J]. Digital Ocean & Underwater Warfare, 2022, 5(4): 335-341.
    [91] 柯健. 海水-大气跨介质环境中LED可见光传输特性研究[D]. 西安: 西安理工大学, 2023.
    [92] 罗汉江, 卜凡峰, 王京龙, 等. 海洋物联网水面及水下多模通信技术研究进展[J]. 山东科技大学学报(自然科学版), 2023, 42(1): 79-90.

    Luo Hanjiang, Bu Fanfeng, Wang Jinglong, et al. Research progress of surface and underwater multimodal communication technology of marine internet of things[J]. Journal of Shandong University of Science and Technology(Natural Science), 2023, 42(1): 79-90.
  • 加载中
图(12)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  6
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-29
  • 修回日期:  2024-05-15
  • 录用日期:  2024-05-27
  • 网络出版日期:  2024-06-11

目录

    /

    返回文章
    返回
    服务号
    订阅号