• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气射流协助圆盘头部航行体入水空泡特性实验研究

甄梓坤 邹志辉 蒋运华

甄梓坤, 邹志辉, 蒋运华. 气射流协助圆盘头部航行体入水空泡特性实验研究[J]. 水下无人系统学报, 2024, 32(3): 1-8 doi: 10.11993/j.issn.2096-3920.2024-0041
引用本文: 甄梓坤, 邹志辉, 蒋运华. 气射流协助圆盘头部航行体入水空泡特性实验研究[J]. 水下无人系统学报, 2024, 32(3): 1-8 doi: 10.11993/j.issn.2096-3920.2024-0041
ZHEN Zikun, ZOU Zhihui, JIANG Yunhua. Experimental Investigation on Cavity Flow Characteristics of Water Entry of Disc Head Vehicle With A Gas Jet Cavitator[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0041
Citation: ZHEN Zikun, ZOU Zhihui, JIANG Yunhua. Experimental Investigation on Cavity Flow Characteristics of Water Entry of Disc Head Vehicle With A Gas Jet Cavitator[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0041

气射流协助圆盘头部航行体入水空泡特性实验研究

doi: 10.11993/j.issn.2096-3920.2024-0041
基金项目: 国家自然基金项目资助(52371344), 广东省自然基金面上项目资助(2021A1515011917).
详细信息
    作者简介:

    甄梓坤:

    蒋运华:

    通讯作者:

    蒋运华(1984-), 男, 博士, 副教授, 主要研究方向为跨介质航行多相流与测控.

  • 中图分类号: TJ6, O35

Experimental Investigation on Cavity Flow Characteristics of Water Entry of Disc Head Vehicle With A Gas Jet Cavitator

  • 摘要: 针对跨介质航行体快速稳定穿越自由液面的需求, 以及目前跨介质过程中存在过大冲击载荷对结构和仪器破坏, 空泡溃灭与复杂非定常多相流动下弹道失稳等问题。探索采用在航行体头部提供向前射流协助其快速稳定穿越自由液面, 射流穿透并改变自由液面的流场结构, 以达到降低过大载荷的目的。为研究气射流协助圆盘头部航行体入水空泡多相流动特性, 开展了向前喷气协助圆盘头部航行体入水实验。分析了入水过程中所形成的空泡形态, 以及气射流冲击液面过程中开口空泡的形成及演化过程, 探讨了不同通气口径、通气量对空泡直径、射流长度等的影响。实验结果表明: 开口空泡形成过程包括液面凹陷、液面振荡、形成流动和空泡形成4个阶段, 开口空泡直径和深度随通气口径增大而减小, 随通气量增大而增大。

     

  • 图  1  实验系统示意图

    Figure  1.  Diagram of experimental setup

    图  2  航行体运动不同阶段示意图

    Figure  2.  Different stages of vehicle movement

    图  3  空泡流动形态分类示意图

    Figure  3.  Flow pattern of the cavity classification

    图  4  空泡形态分类(开口空泡直径与通气系数对应关系)

    Figure  4.  Cavity pattern classification(The corresponding relationship between cavity diameter and ventilation coefficient)

    图  5  向前喷气协助圆盘航行体垂直入水过程空泡形成及演化过程($ {D}_{n}=3\;\mathrm{m}\mathrm{m},\;{C}_{Qs}=0.17, $ $ {F}_{r}=32.7 $)

    Figure  5.  The formation and evolution process of cavity during the forward jet assisted the disc vehicle vertical water-entry process($ {D}_{n}=3\;\mathrm{m}\mathrm{m},\;{C}_{Qs}=0.17, $ $ {F}_{r}=32.7) $

    图  6  小通气系数下带气射流圆盘航行体冲击液面过程(${{D}_{n}=4\;\mathrm{m}\mathrm{m},\;C}_{Qs}=0.11,$ $ {F}_{r}=35.5 $)

    Figure  6.  The impact process of gas jet disc vehicle on liquid surface under small ventilation coefficient($ {{D}_{n}=4\;\mathrm{m}\mathrm{m},\;C}_{Qs}=0.11, $ $ {F}_{r}=35.5 $)

    图  7  空泡直径随时间的变化及其对应的空泡状态

    Figure  7.  The variation of the cavity diameter with time and its corresponding cavity state

    图  8  射流长度随时间的变化

    Figure  8.  The variation of jet length with time

    图  9  空泡直径和射流长度随时间的变化(Dn=4 mm, CQs=0.23, Fr=32.9)

    Figure  9.  The variation of cavity diameter and jet length with time(Dn=4 mm, CQs=0.23, Fr=32.9)

    图  10  空泡直径和射流长度随时间的变化(Dn=5 mm, CQs=0.29, Fr=33.6)

    Figure  10.  The variation of cavity diameter and jet length with time(Dn=5 mm, CQs=0.29, Fr=33.6)

    图  11  不同通气口径下开口空泡直径和深度随通气系数的变化

    Figure  11.  The variation of the diameter and depth of the cavity with the ventilation coefficient under different ventilation nozzle diameters

  • [1] Worthington A M. Impact with a liquid surface studied by the aid of instantaneous photography[J]. Philosophical Transactions of the Royal Society of London, 1900, 194(252-261): 175-199.
    [2] Von Kármán T. The impact on seaplane floats during landing[J]. National Advisory Committee for Aeronautics, 1929, 321(1929): 309-313.
    [3] Chuang S. Experiments on flat-bottom slamming[J]. Journal of Ship Research, 1966, 10(1): 10-17. doi: 10.5957/jsr.1966.10.1.10
    [4] Chuang S. Experiments on slamming of wedge-shaped bodies[J]. Journal of Ship Research, 1967, 11(3): 190-198. doi: 10.5957/jsr.1967.11.3.190
    [5] Okada S, Sumi Y. On the water impact and elastic response of a flat plate at small impact angles[J]. Journal of Marine Science and Technology, 2000, 5(1): 31-39. doi: 10.1007/s007730070019
    [6] Huera-Huarte F J, Jeon D, Gharib M. Experimental investigation of water slamming loads on panels[J]. Ocean Engineering, 2011, 38(11-12): 1347-1355. doi: 10.1016/j.oceaneng.2011.06.004
    [7] Ermanyuk E V, Ohkusu M. Impact of a disk on shallow water[J]. Journal of Fluids and Structures, 2005, 20(3): 345-357. doi: 10.1016/j.jfluidstructs.2004.10.002
    [8] Jiang Y, Shao S, Hong J. Experimental investigation of ventilated supercavitation with gas jet cavitator[J]. Physics of fluids, 2018, 30(1): 012103. doi: 10.1063/1.5005549
    [9] Jiang Y, Zou Z, Yang L, et al. Reduction of water entry impact force by a gas jet[J]. Physical Review Fluids, 2023, 8(6): 64005. doi: 10.1103/PhysRevFluids.8.064005
    [10] Li Y, Jiang Y, Shen L, et al. Experimental investigation on submerged water jet wrapped in an annular gas jet[J]. Physics of Fluids, 2023, 35(1): 012121. doi: 10.1063/5.0135351
    [11] 杨茂, 王涵瑞, 邹志辉, 等. 通气协助航行体出水流动实验研究[J]. 兵器装备工程学报, 2022, 43(12): 29-33, 144. doi: 10.11809/bqzbgcxb2022.12.005

    Yang Mao, Wang Hanrui, Zou Zhihui, et al. Experimental investigation on ventilated cavity flow characteristics of the vehicle water exit[J]. Journal of Ordnance Equipment Engineering, 2022, 43(12): 29-33, 144. doi: 10.11809/bqzbgcxb2022.12.005
    [12] 邹志辉, 李佳, 杨茂, 等. 喷气协助航行体入水空泡流动特性实验研究[J]. 弹道学报, 2022, 34(1): 1-8, 97. doi: 10.12115/j.issn.1004-499X(2022)01-001

    Zou Zhihui, Li Jia, Yang Mao, et al. Experimental investigation on cavity flow characteristics of water entry of vehicle with gas jet cavitator[J]. Journal of Ballistics, 2022, 34(1): 1-8, 97. doi: 10.12115/j.issn.1004-499X(2022)01-001
    [13] Banks R B, Chandrasekhara D V. Experimental investigation of the penetration of a high-velocity gas jet through a liquid surface[J]. Journal of Fluid Mechanics, 1963, 15(1): 13-34. doi: 10.1017/S0022112063000021
    [14] Hwang H Y, Irons G A. A water model study of impinging gas jets on liquid surfaces[J]. Metallurgical and Materials Transactions B, 2012, 43(2): 302-315. doi: 10.1007/s11663-011-9613-3
    [15] Rabbi R, Speirs N, Kiyama A, et al. Impact force reduction by consecutive water entry of spheres[J]. Journal of Fluid Mechanics, 2021, 915: A55. doi: 10.1017/jfm.2020.1165
  • 加载中
图(11)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  4
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-04
  • 修回日期:  2024-04-08
  • 录用日期:  2024-04-09
  • 网络出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    服务号
    订阅号