• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水空航行器跨介质策略研究

刘坤 刘永强 林好 肖军浩 彭辉 鲁兴举 卢惠民

刘坤, 刘永强, 林好, 等. 水空航行器跨介质策略研究[J]. 水下无人系统学报, 2024, 32(3): 1-15 doi: 10.11993/j.issn.2096-3920.2024-0038
引用本文: 刘坤, 刘永强, 林好, 等. 水空航行器跨介质策略研究[J]. 水下无人系统学报, 2024, 32(3): 1-15 doi: 10.11993/j.issn.2096-3920.2024-0038
LIU Kun, LIU Yongqiang, LIN Hao, XIAO Junhao, PENG Hui, LU Xingju, LU Huimin. Research Status of trans-medium strategy for aerial-aquatic vehicles[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0038
Citation: LIU Kun, LIU Yongqiang, LIN Hao, XIAO Junhao, PENG Hui, LU Xingju, LU Huimin. Research Status of trans-medium strategy for aerial-aquatic vehicles[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0038

水空航行器跨介质策略研究

doi: 10.11993/j.issn.2096-3920.2024-0038
基金项目: 国家重点研发计划“智能机器人”重点专项项目资助(2022YFB4701600).
详细信息
    作者简介:

    刘坤:刘 坤(1997-), 男, 在读博士, 研究方向为

  • 中图分类号: TP242.6

Research Status of trans-medium strategy for aerial-aquatic vehicles

  • 摘要: 水空跨介质航行器在军民领域都有广阔的应用前景, 近年来成为机器人领域的热点研究对象。本文以水空跨介质航行器为研究对象, 对现有的水空跨介质航行器的设计和出入水策略作一综述。虽然这些样机结构设计和相关理论研究已经在水空跨介质航行器上得到验证, 但是仍存在很多问题需要解决, 比如水空跨介质航行器跨越介质不灵活稳定、跨域过程的稳定控制问题等等。因此, 迫切需要对现有的跨介质航行器设计、动力选择以及出入水策略进行补充研究, 对关键技术进行优化。通过对现有水空跨介质航行器设计和相关技术的总结, 包括动力选择以及跨介质的转换方式, 为后续跨介质航行器的研究发展提供借鉴。

     

  • 图  1  海豚式机器人

    Figure  1.  The dolphin-inspired robots

    图  2  飞行乌贼式水空航行器

    Figure  2.  The squid-like aerial-undersea vehicles

    图  3  跳跃式机器人

    Figure  3.  The hopping robots

    图  4  扑翼式水空航行器

    Figure  4.  The flapping-wing aerial-undersea vehicles

    图  5  折翼式水空航行器

    Figure  5.  The folding-wing aerial-undersea vehicles

    图  6  旋翼式水空航行器

    Figure  6.  The multirotor-based aerial-undersea vehicles

    图  7  固定翼式水空航行器

    Figure  7.  The fixed-wing aerial-undersea vehicles

    图  8  混合式水空航行器

    Figure  8.  The hybrid aerial-undersea vehicles

    图  9  海豚跃出水面示意图

    Figure  9.  Schematic illustration of an entire dolphin leap

    图  10  滑行策略

    Figure  10.  Skid take-off strategy

    图  11  垂直起飞策略

    Figure  11.  Vertical take-off strategy

    图  12  溅落策略

    Figure  12.  Plunge landing strategy

    图  13  滑落策略

    Figure  13.  Skid landing strategy

    图  14  垂直降落策略

    Figure  14.  Vertical landing strategy

    表  1  自然界中各种动物跨介质运动的特点

    Table  1.   Characteristics of cross-medium locomotion of various animals in nature

    动物 出水方式 出水角度/(°) 出水速度/(m/s) 入水方式 入水角度/(°) 入水速度/(m/s) 体长特征/cm 出入水瞬间
    翠鸟 拍打翅膀 60~75 溅落 45~60 2~4 体长15~28
    翼展20~25
    鲣鸟 拍打翅膀 60~90 溅落 30~45 5~8 体长60~100
    翼展152~158
    鸬鹚 拍打翅膀 45左右 滑落 60~90 3~5 体长60~80
    翼展80~90
    塘鹅 拍打翅膀 60~90 滑落 45~60 4~6 体长140-175
    翼展200左右
    飞鱼 喷射 30~65 18左右 滑落 20~30 10~15 体长45左右
    翼展65左右
    剑鱼 拍打尾鳍和胸鳍 30~65 36左右 溅落 45~60 8~12 体长210左右
    飞行乌贼 喷射 50~80 25左右 滑落 90~180 1~2 体长20左右
    海豚 拍打尾鳍和胸鳍 20~90 10左右 溅落 30~60 2~5 体长100~950
    下载: 导出CSV

    表  2  水空航行器出入水策略

    Table  2.   Trans-medium solutions of aerial-undersea vehicles

    年份 研究机构 驱动方式 水-空过渡策略 空-水过渡策略 参考文献
    2008 哈佛大学 弹簧机构 弹跳 [19]
    2011 麻省理工学院 弹弓机构 弹射 [25]
    2012 哈尔滨工业大学 弹簧机构 弹跳 [20][21]
    2012 麻省理工学院 空中螺旋桨 溅落 [27]
    2013 北京航空航天大学 空中螺旋桨+水下螺旋桨 垂直起飞 [3][28]
    2014 北京航空航天大学 空中螺旋桨+注水推进装置 滑行 滑落 [26]
    2014 英国帝国理工学院 高压喷射 喷射 [80][81]
    2014 米纳斯吉拉斯联邦大学 空中螺旋桨+水下螺旋桨 垂直起飞 垂直降落 [34][36]
    2014 美国海军研究实验室 水下推进器 溅落/滑落 [57][58]
    2015 哈佛大学 仿生拍打 溅落 [22]
    2015 罗格斯大学 空中螺旋桨 垂直起飞 垂直降落 [35][82][83]
    2015 奥克兰大学 [38][39][40]
    2016 中国科学院自动化研究所 尾部推进 仿生拍打 溅落 [9][10]
    2017 科罗拉多州立大学 仿生拍打 [24]
    2017 英国帝国理工学院 高压气体喷射+空中螺旋桨 喷射 溅落 [30]
    2017 哈佛大学 仿生拍打+高压喷射 喷射 [23]
    2017 舍布鲁克大学 空中螺旋桨 垂直起飞 [63]
    2017 美国天主教大学 空中螺旋桨+水下螺旋桨 [59]
    2017 北卡罗来纳州立大学 空中螺旋桨 滑落 [60]
    2018 上海交通大学 垂直降落 [67][68][69][70]
    2018 约翰霍普金斯大学 [64]
    2018 北卡罗来纳州立大学 垂直降落 [61]
    2018 皇家墨尔本大学 高压喷射 喷射 [14][15][16]
    2019 北京航空航天大学 滑落 [17][18]
    2019 帝国理工学院 [65]
    2019 新加坡国立大学 空中螺旋桨(可倾转) 垂直起飞 垂直降落 [47][48][49]
    2019 加利福尼亚大学伯克利分校 空中螺旋桨 [42]
    2019 国防科技大学 溅落 [31]
    2021 苏黎世联邦理工学院 空中螺旋桨+水下螺旋桨 垂直起飞 [29]
    2021 中国海洋大学 共轴反转螺旋桨+水下推进器 垂直降落 [54]
    2021 吉林大学 高速入水推进机构 溅落 [32]
    2022 中国科学院自动化研究所 尾部推进 仿生拍打 [11]
    2022 上海交通大学 空中螺旋桨+水下螺旋桨 垂直起飞 垂直降落 [73]
    2022 南京航空航天大学 滑行 [74]
    2022 北京航空航天大学 空中螺旋桨 垂直起飞 [45]
    2022 上海交通大学 滑落 [66]
    2023 同济大学 空中螺旋桨(可倾转) 垂直降落 [55]
    2023 广东工业大学 [56]
    2023 哈尔滨工程大学 空中螺旋桨+水下螺旋桨 垂直起飞 滑落 [33]
    下载: 导出CSV
  • [1] Longobardi F. Combination-vehicle: U. S. Patent 1286679[P]. 1918-12-3.
    [2] Fantastic P. Ushakov LPL flying submarine[EB/OL]. [2017-09-20]. http://www.airforce.ru/aircraft/miscellaneous/flying_submarine/index.html.
    [3] Yao G, Li Y, Zhang H, et al. Review of hybrid aquatic-aerial vehicle (HAAV): Classifications, current status, applications, challenges and technology perspectives[J]. Progress in Aerospace Sciences, 2023, 139: 100902. doi: 10.1016/j.paerosci.2023.100902
    [4] Sun Y, Liu X, Cao K, et al. Design and theoretical research on aerial-aquatic vehicles: A review[J]. Journal of Bionic Engineering, 2023, 20(6): 2512-2541. doi: 10.1007/s42235-023-00418-x
    [5] Zeng Z, Lyu C, Bi Y, et al. Review of hybrid aerial underwater vehicle: Cross-domain mobility and transitions control[J]. Ocean Engineering, 2022, 248: 110840. doi: 10.1016/j.oceaneng.2022.110840
    [6] 贺永圣. 仿生跨介质飞行器水气动布局融合设计及出水特性分析[D]. 长春: 吉林大学, 2021.
    [7] Chang B, Myeong J, Virot E, et al. Jumping dynamics of aquatic animals[J]. Journal of the Royal Society Interface, 2019, 16(152): 20190014. doi: 10.1098/rsif.2019.0014
    [8] Park Y J, Park D, Cho K J. Design and manufacturing a robotic dolphin to increase dynamic performance[C]//2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). Jeju, Korea (South): IEEE, 2013: 76-77.
    [9] Yu J, Su Z, Wu Z, et al. Development of a fast-swimming dolphin robot capable of leaping[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2307-2316. doi: 10.1109/TMECH.2016.2572720
    [10] Yu J, Wu Z, Su Z, et al. Motion control strategies for a repetitive leaping robotic dolphin[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 913-923. doi: 10.1109/TMECH.2019.2908082
    [11] Chen D, Wu Z, Zhang P, et al. Performance improvement of a high-speed swimming robot for fish-like leaping[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 1936-1943. doi: 10.1109/LRA.2022.3142409
    [12] Yang Z, Gong W, Chen H, et al. Research on the turning maneuverability of a bionic robotic dolphin[J]. IEEE Access, 2022, 10: 7368-7383. doi: 10.1109/ACCESS.2022.3142521
    [13] Pham T H, Nguyen K, Park H C. A robotic fish capable of fast underwater swimming and water leaping with high Froude number[J]. Ocean Engineering, 2023, 268: 113512. doi: 10.1016/j.oceaneng.2022.113512
    [14] Bacciaglia A, Guo D, Marzocca P, et al. Bimodal unmanned vehicle: Propulsion system integration and water/air interface testing[C]//Proceedings of the 31st Congress of the International Council of the Aeronautical Sciences (ICAS 2018). Belo Horizonte, Brasil: Deutsche Gesellschaft für Luft-und Raumfahrt, 2018: 1-10.
    [15] Guo D. Modelling and experimental investigations of a bi-modal unmanned underwater/air system[D]. Melbourne: Royal Melbourne Institute of Technology, 2019.
    [16] Guo D, Bacciaglia A, Simpson M, et al. Design and development a bimodal unmanned system[C]//AIAA Scitech 2019 Forum. San Diego, California: AIAA, 2019: 2096.
    [17] Hou T, Yang X, Su H, et al. Design and experiments of a squid-like aquatic-aerial vehicle with soft morphing fins and arms[C]//2019 International Conference on Robotics and Automation. Montreal, QC, Canada: IEEE, 2019: 4681-4687.
    [18] Hou T, Yang X, Su H, et al. Design, fabrication and morphing mechanism of soft fins and arms of a squid-like aquatic-aerial vehicle with morphology tradeoff[C]//2019 IEEE International Conference on Robotics and Biomimetics. Dali, China: IEEE, 2019: 1020-1026.
    [19] Shin B, Kim H Y, Cho K J. Towards a biologically inspired small-scale water jumping robot[C]//2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Scottsdale, AZ, USA: IEEE, 2008: 127-131.
    [20] Zhao J, Zhang X, Chen N, et al. Why superhydrophobicity is crucial for a water-jumping microrobot? Experimental and theoretical investigations[J]. ACS applied materials & interfaces, 2012, 4(7): 3706-3711.
    [21] Yan J, Yang K, Wang T, et al. A continuous jumping robot on water mimicking water striders[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden: IEEE, 2016: 4686-91.
    [22] Chen Y, Helbling E F, Gravish N, et al. Hybrid aerial and aquatic locomotion in an at-scale robotic insect[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015: 331-338.
    [23] Chen Y, Wang H, Helbling E F, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot[J]. Science robotics, 2017, 2(11): eaao5619. doi: 10.1126/scirobotics.aao5619
    [24] Jiang F, Zhao J, Kota A K, et al. A miniature water surface jumping robot[J]. IEEE Robotics and Automation Letters, 2017, 2(3): 1272-1279. doi: 10.1109/LRA.2017.2662738
    [25] Gao A, Techet A H. Design considerations for a robotic flying fish[C]//OCEANS’11 MTS/IEEE KONA. Waikoloa, HI, USA: IEEE, 2011: 1-8.
    [26] Yao G, Liang J, Wang T, et al. Submersible unmanned flying boat: Design and experiment[C]//2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014). Bali, Indonesia: IEEE, 2014: 1308-1313.
    [27] Fabian A, Feng Y F, Swartz E, et al. Hybrid aerial underwater vehicle[R]. Lexington, USA: MIT Lincoln Lab, 2012.
    [28] Yang X, Wang T, Liang J, et al. Submersible unmanned aerial vehicle concept design study[C]//2013 Aviation Technology, Integration, and Operations Conference. Los Angeles, CA: AIAA, 2013: 4422.
    [29] Rockenbauer F M, Jeger S, Beltran L, et al. Dipper: A dynamically transitioning aerial-aquatic unmanned vehicle[J]. Robotics: Science and Systems, 2021: 12-16.
    [30] Sun X, Cao J, Li Y, et al. Design and field test of a foldable wing unmanned aerial-underwater vehicle[J]. Journal of Field Robotics, 2024, 41(2): 347-373. doi: 10.1002/rob.22265
    [31] 王宝财. 仿生折叠三旋翼跨介质无人机动力学建模与运动控制[D]. 长沙: 国防科技大学, 2019.
    [32] 吴正阳. 基于翠鸟入水策略的跨介质飞行器构型仿生设计及入水性能研究[D]. 长春: 吉林大学, 2021.
    [33] Siddall R, Ortega Ancel A, Kovač M. Wind and water tunnel testing of a morphing aquatic micro air vehicle[J]. Interface focus, 2017, 7(1): 20160085. doi: 10.1098/rsfs.2016.0085
    [34] Drews P L J, Neto A A, Campos M F M. Hybrid unmanned aerial underwater vehicle: Modeling and simulation[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, USA: IEEE, 2014: 4637-4642.
    [35] Maia M M, Soni P, Diez F J. Demonstration of an aerial and submersible vehicle capable of flight and underwater navigation with seamless air-water transition[EB/OL]. (2015-07-07)[2024-05-19]. https://arxiv.org/abs/1507.01932.
    [36] Horn A C, Pinheiro P M, Silva C B, et al. A study on configuration of propellers for multirotor-like hybrid aerial-aquatic vehicles[C]//2019 19th International Conference on Advanced Robotics. Belo Horizonte, Brazil: IEEE, 2019: 173-178.
    [37] Chen G, Liu A, Hu J, et al. Attitude and altitude control of unmanned aerial-underwater vehicle based on incremental nonlinear dynamic inversion[J]. IEEE Access, 2020, 8: 156129-38. doi: 10.1109/ACCESS.2020.3015857
    [38] Alzu'bi H, Akinsanya O, Kaja N, et al. Evaluation of an aerial quadcopter power-plant for underwater operation[C]//2015 10th International Symposium on Mechatronics and its Applications. Sharjah, United Arab Emirates: IEEE, 2015: 1-4.
    [39] Alzu’bi H, Mansour I, Rawashdeh O. Loon copter: Implementation of a hybrid unmanned aquatic–aerial quadcopter with active buoyancy control[J]. Journal of field Robotics, 2018, 35(5): 764-778. doi: 10.1002/rob.21777
    [40] Alzu’bi H M A Q. Loon copter: Modeling, implementation, and stability control of a fully-featured aquatic-aerial quadcopter[D]. Oakland: Oakland University, 2018.
    [41] Bershadsky D, Haviland S, Valdez P E, et al. Design considerations of submersible unmanned flying vehicle for communications and underwater sampling[C]//Oceans 2016 MTS/IEEE Monterey. Monterey, CA, USA: IEEE, 2016: 1-8.
    [42] Zha J, Thacher E, Kroeger J, et al. Towards breaching a still water surface with a miniature unmanned aerial underwater vehicle[C]//2019 International Conference on Unmanned Aircraft Systems. Atlanta, USA: IEEE, 2019: 1178-1185.
    [43] Puppala R, Sivadasan N, Vyas A, et al. Design, estimation of model parameters, and dynamical study of a hybrid aerial-underwater robot: Acutus[C]//ICINCO. [S. l.]: Scitepress, 2019: 423-430.
    [44] Vyas A, Puppala R, Sivadasan N, et al. Modelling and dynamic analysis of a novel hybrid aerial–underwater robot-acutus[C]//Oceans 2019-Marseille. Marseille, France: IEEE, 2019: 1-6.
    [45] Li L, Wang S, Zhang Y, et al. Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces[J]. Science Robotics, 2022, 7(66): eabm6695. doi: 10.1126/scirobotics.abm6695
    [46] Tan Y H, Siddall R, Kovac M. Efficient aerial–aquatic locomotion with a single propulsion system[J]. IEEE Robotics and Automation Letters, 2017, 2(3): 1304-1311. doi: 10.1109/LRA.2017.2665689
    [47] Tan Y H, Chen B M. Design of a morphable multirotor aerial-aquatic vehicle[C]//Oceans 2019 MTS/IEEE Seattle. Seattle, WA, USA: IEEE, 2019: 1-8.
    [48] Tan Y H, Chen B M. Thruster allocation and mapping of aerial and aquatic modes for a morphable multimodal quadrotor[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(4): 2065-2074. doi: 10.1109/TMECH.2020.2998329
    [49] Tan Y H, Chen B M. A morphable aerial-aquatic quadrotor with coupled symmetric thrust vectoring[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). Paris, France: IEEE, 2020: 2223-2229.
    [50] Herng T Y. Design of a Morphable aerial-underwater multirotor robot[D]. Singapore: National University of Singapore, 2021.
    [51] Tan Y H, Chen B M. Underwater stability of a morphable aerial-aquatic quadrotor with variable thruster angles[C]//2021 IEEE International Conference on Robotics and Automation. Xi'an, China: IEEE, 2021: 314-320.
    [52] Tan Y H, Chen B M. A lightweight waterproof casing for an aquatic UAV using rapid prototyping[C]//2020 International Conference on Unmanned Aircraft Systems (ICUAS). Athens, Greece: IEEE, 2020: 1154-1161.
    [53] Tan Y H, Chen B M. Motor-propeller matching of aerial propulsion systems for direct aerial-aquatic operation[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Macau, China: IEEE, 2019: 1963-1970.
    [54] Gao Y, Zhang H, Yang H, et al. Trans-domain amphibious unmanned platform based on coaxial counter-propellers: Design and experimental validation[J]. IEEE Access, 2021, 9: 149433-149446. doi: 10.1109/ACCESS.2021.3125138
    [55] Liu X, Dou M, Huang D, et al. TJ-FlyingFish: Design and implementation of an aerial-aquatic quadrotor with tiltable propulsion units[C]//2023 IEEE International Conference on Robotics and Automation. London, UK: IEEE, 2023: 7324-7330.
    [56] Rao H, Xie L, Yang J, et al. Puffin platform: A morphable unmanned aerial/underwater vehicle with eight propellers[J]. IEEE Transactions on Industrial Electronics, 2023, 71(7): 7621-30.
    [57] Young T. Design and testing of an air-deployed unmanned underwater vehicle[C]//14th AIAA Aviation Technology, Integration, and Operations Conference. Atlanta, GA: AIAA, 2014: 2721.
    [58] Edwards D, Arnold N, Heinzen S, et al. Flying emp-lacement of an underwater glider[C]//Oceans 2017-Anchorage. Anchorage, AK, USA: IEEE, 2017: 1-6.
    [59] Caruccio D, Rush M, Smith P, et al. Design, fabrication, and testing of the fixed-wing air and underwater drone[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Denver, Colorado: AIAA, 2017: 4447.
    [60] Weisler W, Stewart W, Anderson M B, et al. Testing and characterization of a fixed wing cross-domain unmanned vehicle operating in aerial and underwater environments[J]. IEEE Journal of Oceanic Engineering, 2017, 43(4): 969-982.
    [61] Stewart W, Weisler W, MacLeod M, et al. Design and demonstration of a seabird-inspired fixed-wing hybrid UAV-UUV system[J]. Bioinspiration & biomimetics, 2018, 13(5): 056013.
    [62] Stewart W, Weisler W, Anderson M, et al. Dynamic modeling of passively draining structures for aerial-aquatic unmanned vehicles[J]. IEEE Journal of Oceanic Engineering, 2019, 45(3): 840-850.
    [63] Peloquin R A, Thibault D, Desbiens A L. Design of a passive vertical takeoff and landing aquatic UAV[J]. IEEE Robotics and Automation Letters, 2016, 2(2): 381-388.
    [64] Moore J, Fein A, Setzler W. Design and analysis of a fixed-wing unmanned aerial-aquatic vehicle[C]//2018 IEEE International Conference on Robotics and Automation. Brisbane, QLD, Australia: IEEE, 2018: 1236-1243.
    [65] Zufferey R, Ancel A O, Farinha A, et al. Consecutive aquatic jump-gliding with water-reactive fuel[J]. Science Robotics, 2019, 4(34): eaax7330. doi: 10.1126/scirobotics.aax7330
    [66] Wei Z, Teng Y, Meng X, et al. Lifting-principle-based design and implementation of fixed-wing unmanned aerial-underwater vehicle[J]. Journal of Field Robotics, 2022, 39(6): 694-711. doi: 10.1002/rob.22071
    [67] Lu D, Xiong C, Lyu B, et al. Multi-mode hybrid aerial underwater vehicle with extended endurance[C]//2018 Oceans-MTS/IEEE Kobe Techno-Oceans(OTO). Kobe, Japan: IEEE, 2018: 1-7.
    [68] Lu D, Xiong C, Zeng Z, et al. A multimodal aerial underwater vehicle with extended endurance and capabilities[C]//2019 International Conference on Robotics and Automation (ICRA). Montreal, QC, Canada: IEEE, 2019: 4674-80.
    [69] Lu D, Xiong C, Zhou H, et al. Design, fabrication, and characterization of a multimodal hybrid aerial underwater vehicle[J]. Ocean engineering, 2021, 219: 108324. doi: 10.1016/j.oceaneng.2020.108324
    [70] Lyu C, Lu D, Xiong C, et al. Toward a gliding hybrid aerial underwater vehicle: Design, fabrication, and experiments[J]. Journal of Field Robotics, 2022, 39(5): 543-556. doi: 10.1002/rob.22063
    [71] Lu D, Guo Y, Xiong C, et al. Takeoff and landing control of a hybrid aerial underwater vehicle on disturbed water’s surface[J]. IEEE Journal of Oceanic Engineering, 2021, 47(2): 295-311.
    [72] Hu R, Lu D, Xiong C, et al. Modeling, characterization and control of a piston-driven buoyancy system for a hybrid aerial underwater vehicle[J]. Applied Ocean Research, 2022, 120: 102925. doi: 10.1016/j.apor.2021.102925
    [73] Bi Y, Jin Y, Lyu C, et al. Nezha-Mini: Design and locomotion of a miniature low-cost hybrid aerial underwater vehicle[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 6669-76. doi: 10.1109/LRA.2022.3176438
    [74] 昂海松, 王源. 一种变轴螺旋桨水空跨域无人航行器设计和控制技术[J]. 无人系统技术, 2022, 5(3): 1-11.

    Ang Haisong, Wang Yuan. Design and control technology of a variable axis propeller unmanned vehicle cross region of water and air[J]. Unmanned Systems Technology, 2022, 5(3): 1-11.
    [75] Izraelevitz J S, Triantafyllou M S. Adding in-line motion and model-based optimization offers exceptional force control authority in flapping foils[J]. Journal of Fluid Mechanics, 2014, 742: 5-34. doi: 10.1017/jfm.2014.7
    [76] Izraelevitz J S, Triantafyllou M S. A novel degree of freedom in flapping wings shows promise for a dual aerial/aquatic vehicle propulsor[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA: IEEE, 2015: 5830-37.
    [77] Reid B D. The Flying Submarine: The Story of the Invention of the Reid Flying Submarine, RFS-1[M]. Maryland: Heritage Books, 2012.
    [78] Crouse G. Conceptual design of a submersible airplane[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida: AIAA, 2010: 1012.
    [79] Goddard R, Eastgate J. Submersible aircraft concept design study[M]. Washington: Naval Surface Warfare Center, Carderock Division, 2010.
    [80] Siddall R, Kovač M. Launching the AquaMAV: bioinspired design for aerial-aquatic robotic platforms[J]. Bioinspiration & Biomimetics, 2014, 9(3): 031001.
    [81] Siddall R, Kovac M. Fast aquatic escape with a jet thruster[J]. IEEE/ASME Transactions on Mechatronics, 2016, 22(1): 217-226.
    [82] Maia M M, Mercado D A, Diez F J. Design and implementation of multirotor aerial-underwater vehicles with experimental results[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE, 2017: 961-966.
    [83] Mercado D, Maia M, Diez F J. Aerial-underwater systems, a new paradigm in unmanned vehicles[J]. Journal of Intelligent & Robotic Systems, 2019, 95: 229-238.
    [84] Wang T M, Yang X B, Liang J H, et al. CFD based investigation on the impact acceleration when a gannet impacts with water during plunge diving[J]. Bioinspiration & Biomimetics, 2013, 8(3): 036006.
    [85] Liang J, Yang X, Wang T, et al. Design and experiment of a bionic gannet for plunge-diving[J]. Journal of Bionic Engineering, 2013, 10(3): 282-291. doi: 10.1016/S1672-6529(13)60224-3
    [86] Yang X, Liang J, Wang T, et al. Computational simulation of a submersible unmanned aerial vehicle impacting with water[C]//2013 IEEE International Conference on Robotics and Biomimetics. Shenzhen, China: IEEE, 2013: 1138-43.
    [87] Liang J H, Yao G C, Wang T M, et al. Wing load investigation of the plunge-diving locomotion of a gannet Morus inspired submersible aircraft[J]. Science China Technological Sciences, 2014, 57: 390-402. doi: 10.1007/s11431-013-5437-5
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  11
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-29
  • 修回日期:  2024-05-20
  • 录用日期:  2024-05-22
  • 网络出版日期:  2024-05-28

目录

    /

    返回文章
    返回
    服务号
    订阅号