• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航行体高速入水降载方法研究综述

郑伟 李强 范旭东 吕续舰

郑伟, 李强, 范旭东, 等. 航行体高速入水降载方法研究综述[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0029
引用本文: 郑伟, 李强, 范旭东, 等. 航行体高速入水降载方法研究综述[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0029
ZHENG Wei, LI Qiang, FAN Xudong, LYU xujian. A review of research on the load reduction methods for high-speed water entry of vehicle[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0029
Citation: ZHENG Wei, LI Qiang, FAN Xudong, LYU xujian. A review of research on the load reduction methods for high-speed water entry of vehicle[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0029

航行体高速入水降载方法研究综述

doi: 10.11993/j.issn.2096-3920.2024-0029
详细信息
    作者简介:

    郑伟:郑 伟(1987- ), 男, 博士, 高工, 主要研究方向为飞行器总体设计

    通讯作者:

    吕续舰(1984-), 男, 副教授, 主要研究方向为高速跨介质入水.

  • 中图分类号: TJ630.1; U674

A review of research on the load reduction methods for high-speed water entry of vehicle

  • 摘要: 航行体高速跨介质入水过程涉及多相流与物体间复杂的流固耦合作用, 航行体面临瞬态冲击载荷极易发生结构损坏。本文围绕高速跨介质航行体入水冲击问题展开了简要叙述, 重点论述了跨介质航行体主被动降载及其他降载方法的研究现状。总结了常见降载方法的优劣, 并阐明了高速跨介质航行体入水降载研究的重点发展方向, 以期为航行体高速跨介质入水载荷特性和降载分析方法的进一步研究提供参考。

     

  • 图  1  航行体高速入水隐患[1]

    Figure  1.  Hidden dangers of high-speed water entry for navigation bodies

    图  2  典型航行体入水冲击载荷特征

    Figure  2.  Characteristics of Impact Load on Typical Navigation Bodies Entering Water

    图  3  尾拍运动[4]

    Figure  3.  Tail slap during water-entry

    图  4  跨介质入水尾拍作用导致航行体的弯曲折断过程[11]

    Figure  4.  The process of bending and breaking the navigational body due to the cross-medium inflow wake effect

    图  5  导弹和空投鱼雷工作示意图

    Figure  5.  Schematic diagram of missiles and airdropped torpedoes

    图  6  收口状态降落伞流固耦合仿真计算充气外形[18]

    Figure  6.  Fluid structure coupling simulation calculation of inflatable shape for parachute in closed state

    图  7  航行体开伞减速入水被拦截

    Figure  7.  A vehicle is intercepted as it decelerates into the water

    图  8  航行体喷气协助入水[20]

    Figure  8.  Jet assisted water entry for Vehicle

    图  9  不同喷气量下冲击压力对比[27]

    Figure  9.  Comparison of impact pressure under different jet volumes

    图  10  气囊装置在实际工程中的应用

    Figure  10.  The application of airbag devices in practical engineering

    图  11  带气囊航行体倾斜落水-上浮过程[32]

    Figure  11.  The process of inclined descent and ascent of a vehicle with airbags

    图  12  带气囊回转体入水试验[34]

    Figure  12.  Water-entry experiment of a cylinder with airbag

    图  13  典型缓冲头帽结构示意图[35]

    Figure  13.  Schematic diagram of typical buffer head cap structure

    图  14  缓冲装置破碎示意图[46]

    Figure  14.  Schematic diagram of buffer device crushing

    图  15  缓冲头帽变形失效过程示意图[47]

    Figure  15.  Schematic diagram of deformation and failure process of buffer head cap

    图  16  不同表面润湿性球体入水对比[52]

    Figure  16.  Comparison of entry of spheres with different surface wettability into water

    图  17  超空泡鱼雷示意图[52]

    Figure  17.  Schematic diagram of supercavitating torpedoes

    图  18  跨介质航行体入水的空泡发展过程[56]

    Figure  18.  Water-entry cavity development of the trans-media vehicle

    图  19  不同头型产生的超空泡形态[63]

    Figure  19.  Supervoid morphology generated by different head shapes

    图  20  鸟类入水过程[72]

    Figure  20.  The process of birds entering water

    图  21  装备弹性缓冲器射弹模型[78]

    Figure  21.  Equipment elastic buffer projectile model

    图  22  球体串联入水试验[84]

    Figure  22.  Water entry experiments with tandem spheres

    图  23  多级降载装置降载机理示意图[85]

    Figure  23.  Mechanism of multi-stage load reduction structure

  • [1] Truscott T T, Epps B P, Belden J. Water entry of projectiles[J]. Annual Review of Fluid Mechanics, 2014, 46(1): 355-378. doi: 10.1146/annurev-fluid-011212-140753
    [2] Chaudhry A Z, Shi Y, Pan G, et al. Mechanical characterization of flat faced deformable AUV during water entry impact considering the hydroelastic effects[J]. Applied ocean research, 2021, 115: 102849. doi: 10.1016/j.apor.2021.102849
    [3] Liu W, Zhang A, Miao X, et al. Investigation of hydrodynamics of water impact and tail slamming of high-speed water entry with a novel immersed boundary method[J]. Journal of Fluid Mechanics, 2023, 958.
    [4] Yao X, Yang Z, Ma G, et al. Research on the characteristics and similarity relationships of impact load reduction of a vehicle entering water[J]. Applied ocean research, 2024, 142: 103814. doi: 10.1016/j.apor.2023.103814
    [5] Wang Z, Feng P, Liu G, et al. Load and motion behaviors of ogive-nosed projectile during high-speed water entry with angle of attack[J]. Ocean engineering, 2022, 266: 112937. doi: 10.1016/j.oceaneng.2022.112937
    [6] Liu X, Luo K, Yuan X, et al. Numerical study on the impact load characteristics of a trans-media vehicle during high-speed water entry and flat turning[J]. Ocean engineering, 2023, 273: 113986. doi: 10.1016/j.oceaneng.2023.113986
    [7] 迟铁, 流固耦合分析下的船体高速入水冲击数值模拟[J]. 舰船科学技术, 2023, 45(19): 60-63.

    Chi Tie, Numerical simulation of high-speed water entry impact of ship hull under fluid structure coupling analysis[J]. Ship Science and Technology, 2023, 45(19): 60-63.
    [8] 范旭东, 漆超, 王旭, 等. 基于ALE方法的高速弹体入水冲击特性研究[J]. 江苏科技大学学报(自然科学版), 2022, 36(02): 7-14.

    Fan Xudong, Qi Chao, Wang Xu, et al. Research on water impact characteristics of high-speed projectiles based on ALE method[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2022, 36(02): 7-14.
    [9] 杨庆, 谭智铎, 俞建成, 等. 空投水下滑翔机入水冲击载荷研究[J]. 舰船科学技术, 2023, 45(04): 67-73. doi: 10.3404/j.issn.1672-7649.2023.04.014

    Yang Qing, Tan Zhiduo, Yu Jiancheng, et al. Research on impact load of underwater glider entering water by airdrop[J]. Ship Science and Technology, 2023, 45(04): 67-73. doi: 10.3404/j.issn.1672-7649.2023.04.014
    [10] 刘华坪, 余飞鹏, 张岳青, 等. 不同头型鱼雷入水冲击载荷研究[J]. 水下无人系统学报, 2018, 26(6): 527-532.

    Liu Huaping, Yu Feipeng, Zhang Yueqing, et al. Analyzing water-entry impact load on torpedo with different head types[J]. Journal of Unmanned Undersea Systems, 2018, 26(6): 527-532.
    [11] 明付仁, 王嘉捷, 刘文韬, 等. 高速跨介质入水多相流动与流固耦合特性研究综述[J]. 空气动力学学报, 2024, 42(1): 67-85.

    Ming Furen, Wang Jiajie, Liu Wentao, et al. Review of multiphase flow and fluid-structure interaction of high-speed water entry[J]. Acta Aerodynamica Sinica, 2024, 42(1): 68-85, 67.
    [12] 刘正平. 空投鱼雷雷伞系统纵向运动稳定性分析[J]. 舰船科学技术, 1993(3): 22-26.

    Liu Zhengping. Stability analysis of longitudinal motion of air-dropped torpedo parachute system[J]. Ship Science and Technology, 1993(3): 22-26.
    [13] 刘正平, 王崇伟. 空投鱼雷雷伞系统五自由度运动的研究[J]. 舰船科学技术, 1996(5): 38-42.

    Liu Zhengping, Wang Chongwei. Research on five-degree-of-freedom motion of air-dropped torpedo parachute system[J]. Ship Science and Technology, 1996(5): 38-42.
    [14] 李兵. 鱼雷用降落伞设计技术[J]. 鱼雷技术, 2004(3): 37-40.

    Li Bing. Preliminary discussion of torpedo parachute[J]. Torpedo Technology, 2004(3): 37-40.
    [15] 潘星, 胡利, 曹义华. 降落伞主充气阶段的动态仿真及流场分析[J]. 航空动力学报, 2008(1): 87-93.

    Pan Xing, Hu Li, Cao Yihua. Analysis of dynamic simulation and fluid field of parachute in inflation stage[J]. Journal of Aerospace Power, 2008(1): 87-93.
    [16] 李伟, 徐文焱, 邓鹏. 反潜导弹空中末弹道及入水控制问题研究[J]. 舰船科学技术, 2012, 34(12): 82-87. doi: 10.3404/j.issn.1672-7649.2012.12.017

    Li Wei, Xu Wenyan, Deng Peng. Research on terminal trajectory and water-entry control of antisubmarine missile[J]. Ship Science and Technology, 2012, 34(12): 82-87. doi: 10.3404/j.issn.1672-7649.2012.12.017
    [17] 郭聚, 韩建立, 李新成, 等. 基于六自由度的空投鱼雷雷伞系统建模仿真研究[J]. 舰船电子工程, 2022, 42(3): 124-128. doi: 10.3969/j.issn.1672-9730.2022.03.028

    Guo Ju, Han Jianli, Li Xincheng, et al. Reseach of modeling and simulation of airdrop torpedo parachute system based on six free degrees[J]. Ship Electronic Engineering, 2022, 42(3): 124-128. doi: 10.3969/j.issn.1672-9730.2022.03.028
    [18] 隋蓉, 张文博. 降落伞临界开伞速度研究[J]. 航天返回与遥感, 2023, 44(3): 1-8.

    Sui Rong, Zhang Wenbo. The research on the critical velocity of parachute opening[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(3): 1-8.
    [19] 邹志辉. 喷气入水通气空泡流动特性实验研究[D]. 哈尔滨工程大学, 2021.

    Zou Zhihui. Experimental investigation of ventilated cavity flow characteristics of water entry with gas jet cavitator[D]. Harbin Engineering University, 2021.
    [20] 邹志辉, 李佳, 杨茂, 等. 喷气协助航行体入水空泡流动特性实验研究[J]. 弹道学报, 2022, 34(1): 1-8.

    Zou Zhihui, Li Jia, Yang Mao, et al. Experimental investigation on cavity flow characteristics of water entry of vehicle with gas jet cavitator[J]. Journal of Ballistics, 2022, 34(1): 1-8, 97.
    [21] Chuang S. Experiments on flat-bottom slamming[J]. Journal of Ship Research, 1966, 10(1): 10-17. doi: 10.5957/jsr.1966.10.1.10
    [22] Chuang S. Experiments on slamming of wedge-shaped bodies[J]. Journal of Ship Research, 1967, 11(3): 190-198. doi: 10.5957/jsr.1967.11.3.190
    [23] Huera-Huarte F J, Jeon D, Gharib M. Experimental investigation of water slamming loads on panels[J]. Ocean Engineering, 2011, 38(11-12): 1347-1355. doi: 10.1016/j.oceaneng.2011.06.004
    [24] Okada S, Sumi Y. On the water impact and elastic response of a flat plate at small impact angles[J]. Journal of marine science and technology, 2000, 5(1): 31-39. doi: 10.1007/s007730070019
    [25] Ermanyuk E V, Ohkusu M. Impact of a disk on shallow water[J]. Journal of Fluids and Structures, 2005, 20(3): 345-357. doi: 10.1016/j.jfluidstructs.2004.10.002
    [26] 潘龙, 王焕然, 姚尔人, 等. 头部喷气平头圆柱体人水缓冲机制研究[J]. 工程热物理学报, 2015, 36(8): 1691-1695.

    Pan Long, Wang Huanran, Yao Erren, et al. Mechanism research on the water-entry impact of the head-jetting flat cylinder[J]. Journal of Engineering Thermophysics, 2015, 36(8): 1691-1695.
    [27] 刘华坪, 余飞鹏, 韩冰, 等. 头部喷气影响航行体入水载荷的数值模拟[J]. 工程热物理学报, 2019, 40(2): 300-305.

    Liu Huaping, Yu Feipeng, Han Bing, et al. Numerical simulation study on influence of top jet in object water entering impact[J]. Journal of Engineering Thermophysics, 2019, 40(2): 300-305.
    [28] 蒋运华, 刘洪松, 邹志辉, 等. 向前气射流协助航行体入水空泡特性分析: 第十一届全国流体力学学术会议[Z]. 中国广东深圳: 2020.

    Jiang Yunhua, Liu Hongsong, Zou Zhihui, et al. Characteristic analysis of entering water bubbles of sailing bodies assisted by forward air jets: 11th National Conference on Fluid Mechanics [Z]. Shenzhen, Guangdong, China: 2020.
    [29] 赵海瑞, 施瑶, 潘光. 头部喷气航行器高速入水空泡特性数值分析[J]. 西北工业大学学报, 2021, 39(4): 810-817. doi: 10.1051/jnwpu/20213940810

    Zhao Hairui, Shi Yao, Pan Guang, et al. Numerical simulation of cavitation characteristics in high speed water entry of head-jetting underwater vehicle[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 810-817. doi: 10.1051/jnwpu/20213940810
    [30] 陈洋, 吴亮, 曾国伟, 等. 带环形密闭气囊弹体入水冲击过程的数值分析[J]. 爆炸与冲击, 2018, 38(5): 1155-1164. doi: 10.11883/bzycj-2017-0387

    Chen Yang, Wu Liang, Zeng Guowei, et al. Numerical analysis of the water entry process of a projectile with a circular airbag[J]. Explosion and Shock Waves, 2018, 38(5): 1155-1164. doi: 10.11883/bzycj-2017-0387
    [31] 吴远飞. 带应急漂浮气囊的缩比直升机结构着水耦合响应分析[J]. 中国科技信息, 2018, 11(1): 59-61. doi: 10.3969/j.issn.1001-8972.2018.01.022

    Wu Yuanfei. Analysis of the coupled response of a scaled-down helicopter structure with emergency floating airbag to water[J]. China Science and Technology Information, 2018, 11(1): 59-61 doi: 10.3969/j.issn.1001-8972.2018.01.022
    [32] 包健, 马贵辉, 孙龙泉, 等. 带椭球形气囊航行体落水-上浮过程仿真[J]. 兵工学报, 2024, 45(1): 206-218.

    Bao Jian, Ma Guihui, Sun Longquan, et al. Simulation of falling-floating process of vehicle with ellipsoidal airbags[J]. Acta Armamentarii, 2024, 45(1): 206-218.
    [33] 职明洋, 燕国军, 孙龙泉, 等. 带气囊结构航行体入水回收动力学特性研究[J]. 力学学报, 2024, 56(4): 943-959. doi: 10.6052/0459-1879-23-451

    Zhi Mingyang, Yan Guojun, Sun Longquan, et al. Investigation of dynamic characteristics about vehicle with airbags structure during water-entry and recovery[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 943-959. doi: 10.6052/0459-1879-23-451
    [34] 陈开颜, 陈辉, 魏海鹏, 等. 带囊回转体落水仿真与试验研究[J]. 船舶力学, 2022, 26(3): 315-322. doi: 10.3969/j.issn.1007-7294.2022.03.001

    Chen Kaiyan, Chen Hui, Wei Haipeng, et al. Simulation and experimental study on a cylinder with airbags falling into water[J]. Journal of Ship Mechanics, 2022, 26(3): 315-322. doi: 10.3969/j.issn.1007-7294.2022.03.001
    [35] 徐新栋, 李建辰, 曹小娟. 鱼雷缓冲头帽入水冲击性能研究[J]. 鱼雷技术, 2012, 20(3): 161-165,170.

    Xu Xindong, Li Jianchen, Cao Xiaojuan. Water-entry impact performance of torpedo′s cushion nose cap[J]. Torpedo Technology, 2012, 20(3): 161-165,170.
    [36] A. H E. Protective nose cap for torpedoes[Z]. 1959.
    [37] W. M. Hinckley J C S Y. Analysis of rigid polyurethane foam as a shock mitigator[J]. Experimental Mechanics, 1975, 15(5): 177-183. doi: 10.1007/BF02319143
    [38] Shutler R A, Manning M R, Leitch P A, et al. Method of producing missile nose cones[Z]. US, 2009.
    [39] 严忠汉. 入水弹头缓冲器特性探讨[J]. 水动力学研究与进展, 1987(1): 112-121.

    Yan Zhonghan. An approach to the behavior of water-entry missile's mitigator[J]. Journal of Hydrodynamics, 1987(1): 112-121.
    [40] 宣建明, 宋志平, 严忠汉. 鱼雷入水缓冲保护头帽解体试验研究[J]. 鱼雷技术, 1999(2): 41-46.

    Xuan Jianming, Song Zhiping, Yan Zhonghan. Experimental study on the disintegration of torpedo entry buffer protection head cap[J]. Torpedo Technology, 1999(2): 41-46.
    [41] 魏海鹏, 史崇镔, 孙铁志, 等. 基于ALE方法的航行体高速入水缓冲降载性能数值研究[J]. 爆炸与冲击, 2021, 41(10): 115-126. doi: 10.11883/bzycj-2020-0461

    Wei Haipeng, Shi Chongbin, Sun Tiezhi, et al. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method[J]. Explosion and Shock Waves, 2021, 41(10): 115-126. doi: 10.11883/bzycj-2020-0461
    [42] 孙龙泉, 王都亮, 李志鹏, 等. 基于CEL方法的航行体高速入水泡沫铝缓冲装置降载性能分析[J]. 振动与冲击, 2021, 40(20): 80-88.

    Sun Longquan, Wang Duliang, Li Zhipeng, et al. Analysis on load reduction performance of foamed aluminum buffer device for high speed water entry of vehicle based on a CEL method[J]. Journal of Vibration and Shock, 2021, 40(20): 80-88.
    [43] 施瑶, 刘振鹏, 潘光, 等. 航行体梯度密度式头帽结构设计及降载性能分析[J]. 力学学报, 2022, 54(4): 939-953. doi: 10.6052/0459-1879-21-620

    Shi Yao, Liu Zhenpeng, Pan Guang, et al. Structural design and load reduction performance analysis of gradient density head cap of vehicle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 939-953. doi: 10.6052/0459-1879-21-620
    [44] 权晓波, 包健, 孙龙泉, 等. 基于耦合欧拉-拉格朗日算法的航行体缓冲头帽冲击性能[J]. 兵工学报, 2022, 43(4): 851-860. doi: 10.12382/bgxb.2021.0168

    Quan Xiaobo, Bao Jian, Sun Longquan, et al. Impact performance of cushion nose cap of underwater vehicle based on cel method[J]. Acta Armamentarii, 2022, 43(4): 851-860. doi: 10.12382/bgxb.2021.0168
    [45] Li Y, Sun T, Zong Z, et al. Dynamic crushing of a dedicated buffer during the high-speed vertical water entry process[J]. Ocean engineering, 2021, 236(15): 109526.
    [46] Li Y, Zong Z, Sun T. Classification of the collapse of a composite fairing during the oblique high-speed water entry[J]. Thin-Walled Structures, 2023, 182: 110260. doi: 10.1016/j.tws.2022.110260
    [47] Li Y, Zong Z, Sun T. Crushing behavior and load-reducing performance of a composite structural buffer during water entry at high vertical velocity[J]. Composite Structures, 2021, 255(1): 112883.
    [48] 黄晓艳, 刘波. 舰船用结构材料的现状与发展[J]. 船舶, 2004(3): 21-24. doi: 10.3969/j.issn.1001-9855.2004.03.005

    Huang Xiaoyan, Liu Bo. Current situation and development of warship structure material[J]. Ship & Boat, 2004(3): 21-24. doi: 10.3969/j.issn.1001-9855.2004.03.005
    [49] 张梦, 孙曙日, 冯殿震. 新材料在鱼雷设计中的应用与发展[J]. 鱼雷技术, 2015, 23(2): 86-89,118.

    Zhang Meng, Sun Shuri, Feng Dianzhen, et al. Application and development of new materials in torpedo designs[J]. Torpedo Technology, 2015, 23(2): 86-89,118.
    [50] 黄德民. 新材料在现代鱼雷技术中的应用与发展[J]. 鱼雷技术, 2004(2): 1-3.

    Huang Demin. Application and development of new material in modern torpedo technology[J]. Torpedo Technology, 2004(2): 1-3.
    [51] 李德良, 王宝柱, 刘东晖, 等. 阻尼材料的发展及其在舰船上的应用[J]. 现代涂料与涂装, 2009, 12(2): 25-27. doi: 10.3969/j.issn.1007-9548.2009.02.008

    Li Deliang, Wang Baozhu, Liu Donghui, et al. Development of damping material and its application on ship[J]. Modern Paint & Finishing, 2009, 12(2): 25-27. doi: 10.3969/j.issn.1007-9548.2009.02.008
    [52] 刘思华, 李利剑, 朱晋, 等. 表面润湿性对球体斜射入水过程的影响研究[J]. 力学学报, 2024, 56(4): 960-971. doi: 10.6052/0459-1879-23-461

    Liu Sihua, Li Lijian, Zhu Jing, et al. Influence of surface wettability on the process of oblique water entry of sphere[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 960-971. doi: 10.6052/0459-1879-23-461
    [53] Truscott T T, Techet A H. A spin on cavity formation during water entry of hydrophobic and hydrophilic spheres[J]. Physics of Fluids, 2009, 21(12): 180.
    [54] Do-Quang M, Amberg G. The splash of a solid sphere impacting on a liquid surface: Numerical simulation of the influence of wetting[J]. Physics of Fluids, 2009, 21(2): 180.
    [55] 王聪, 许海雨, 卢佳兴. 跨介质航行器入水多相流场及运动特性研究现状与展望[J]. 水下无人系统学报, 2023, 31(1): 38-49. doi: 10.11993/j.issn.2096-3920.2022-0082

    Wang Cong, Xu Haiyu, Lu Jiaxing, et al. Status and prospects of investigation into multiphase flow field and motion characteristics of trans-medium vehicles during water entry[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 38-49. doi: 10.11993/j.issn.2096-3920.2022-0082
    [56] 刘喜燕, 袁绪龙, 罗凯, 等. 带尾裙跨介质航行体高速斜入水实验研究[J]. 爆炸与冲击, 2023, 43(11): 108-120. doi: 10.11883/bzycj-2022-0509

    Liu Xiyan, Yuan Xulong, Luo Kai, et al. Experimental study on high-velocity oblique water entry of a trans-media vehicle with tail-skirt[J]. Explosion and Shock Waves, 2023, 43(11): 108-120. doi: 10.11883/bzycj-2022-0509
    [57] Passandideh-Fard M, Roohi E. Transient simulations of cavitating flows using a modified volume-of-fluid (VOF) technique[J]. International Journal of Computational Fluid Dynamics, 2008, 22(1-2): 97-114. doi: 10.1080/10618560701733657
    [58] 鲍雪, 杨永生. 水下航行体的超空泡形态及减阻特性仿真分析[J]. 装备制造技术, 2015(4): 243-244. doi: 10.3969/j.issn.1672-545X.2015.04.088

    Bao Xue, Yang Yongsheng. Simulation on supercavitation characteristics of underwater vehicle[J]. Equipment Manufacturing Technology, 2015(4): 243-244. doi: 10.3969/j.issn.1672-545X.2015.04.088
    [59] 邹多艺佳, 朱墨, 蔡希文, 等. 空化器锥角对超空泡射弹阻力与弹道影响数值研究[J]. 兵器装备工程学报, 2023, 44(12): 54-62. doi: 10.11809/bqzbgcxb2023.12.008

    Zou Duoyijia, Zhu M 0, Cai Xiwen, et al. Numerical study on the influence of cavitator cone angle on the drag and ballistic of supercavitating projectile[J]. Journal of Ordnance Equipment Engineering, 2023, 44(12): 54-62. doi: 10.11809/bqzbgcxb2023.12.008
    [60] 张亮, 胡常莉, 吴小安. 超空泡航行体锥段结构对其尾拍运动影响的数值研究[J]. 兵工学报, 2024, 45(3): 828-836.

    Zhang Liang, Hu Changli, Wu Xiaoan, et al. Numerical study on the Influence of Cone Geometry of Supercavitating Vehicle on Its Tail-slap Motion[J]. Acta Armamentarii, 2024, 45(3): 828-836.
    [61] Bodily K G, Carlson S J, Truscott T T. The water entry of slender axisymmetric bodies[J]. Physics of Fluids, 2014, 26(7).
    [62] Shafaghat R, Hosseinalipour S M, Lashgari I, et al. Shape optimization of axisymmetric cavitators in supercavitating flows, using the NSGA II algorithm[J]. Applied Ocean Research, 2011, 33(3): 193-198. doi: 10.1016/j.apor.2011.03.001
    [63] 魏平, 王首发, 严文荣, 等. 超空泡射弹头锥外形对阻力及空化特性的影响[J]. 海军工程大学学报, 2022, 34(6): 84-89,95. doi: 10.7495/j.issn.1009-3486.2022.06.015

    Wei Ping, Wang Shoufa, Yan Wenrong, et al. Influence of supercavitating projectiles' nose on resistance and cavitation characteristics[J]. Journal of Naval University of Engineering, 2022, 34(6): 84-89,95. doi: 10.7495/j.issn.1009-3486.2022.06.015
    [64] 宋盼盼, 赵捍东, 吴建萍. 不同头型鱼雷垂直入水仿真研究[J]. 机电技术, 2013, 36(6): 64-65. doi: 10.3969/j.issn.1672-4801.2013.06.022

    Song Panan, Zhao Handong, Wu Jianping. Simulation study on vertical entry of torpedoes with different head types[J]. Mechanical and Electrical Technology, 2013, 36(6): 64-65. doi: 10.3969/j.issn.1672-4801.2013.06.022
    [65] 马庆鹏, 魏英杰, 王聪, 等. 不同头型运动体高速入水空泡数值模拟[J]. 哈尔滨工业大学学报, 2014, 46(11): 24-29. doi: 10.11918/j.issn.0367-6234.2014.11.004

    Ma Qingpeing, Wei Yingjie, Wang Cong, et al. Numerical simulation of high-speed water entry cavity of cylinders[J]. Journal of Harbin Institute of Technology, 2014, 46(11): 24-29. doi: 10.11918/j.issn.0367-6234.2014.11.004
    [66] 方城林, 魏英杰, 王聪, 等. 不同头型高速射弹垂直入水数值模拟[J]. 哈尔滨工业大学学报, 2016, 48(10): 77-82. doi: 10.11918/j.issn.0367-6234.2016.10.011

    Fang Chenglin, Wei Yingjie, Wang Cong, et al. Numerical simulation of vertical high-speed water entry process of projectiles with different heads[J]. Journal of Harbin Institute of Technology, 2016, 48(10): 77-82. doi: 10.11918/j.issn.0367-6234.2016.10.011
    [67] 石汉成, 蒋培, 程锦房. 头部形状对水雷入水载荷及水下弹道影响的数值仿真分析[J]. 舰船科学技术, 2010, 32(10): 104-107. doi: 10.3404/j.issn.1672-7649.2010.10.027

    Shi Hancheng, Jiang Pei, Cheng Jinfang. Research on numerical simulation of mine water-entry impact acceleration and underwater ballistic trajectory under the different mine's head shape[J]. Ship Science and Technology, 2010, 32(10): 104-107. doi: 10.3404/j.issn.1672-7649.2010.10.027
    [68] 孙玉松, 周穗华, 张晓兵, 等. 基于多介质ALE方法的大型弹体入水载荷特性研究[J]. 海军工程大学学报, 2019, 31(6): 101-106. doi: 10.7495/j.issn.1009-3486.2019.06.019

    Sun Yusong, Zhou Suihua, Zhang Xiaobing, et al. On water-impact load of heavy projectiles base on multi-material ALE method[J]. Journal of Naval University of Engineering, 2019, 31(6): 101-106. doi: 10.7495/j.issn.1009-3486.2019.06.019
    [69] Chang B, Croson M, Straker L, et al. How seabirds plunge-dive without injuries[J]. Proc Natl Acad Sci U S A, 2016, 113(43): 12006-12011. doi: 10.1073/pnas.1608628113
    [70] Sharker S I, Holekamp S, Mansoor M M, et al. Water entry impact dynamics of diving birds[J]. Bioinspir Biomim, 2019, 14(5): 56013. doi: 10.1088/1748-3190/ab38cc
    [71] 吴正阳, 张成春, 贺永圣, 等. 跨介质航行器流体动力外形仿生设计[J]. 宇航总体技术, 2020, 4(2): 62-68.

    Wu Zhengyang, Zhang Chengchun, He Yongsheng, et al. Biomimetic design of fluid dynamic shape for cross-media vehicle[J]. Astronautical Systems Engineering Technology, 2020, 4(2): 62-68.
    [72] 朱美慧. 航行体入水缓冲仿生设计及降载性能研究[D]. 吉林大学, 2023.
    [73] 鲍杨春. 跨介质航行器流体动力外形组合仿生设计与气动特性分析[D]. 吉林大学, 2019.
    [74] 罗剑桥, 刘晓东, 马文朝, 等. 组合仿生跨介质飞行器设计及流固耦合性能研究[J]. 无人系统技术, 2022, 5(3): 28-39.

    Luo Jianqiao, Liu Xiaodong, Ma Wenchao, et al. Design of combined bionic trans-media vehicle and research on fluid-solid coupling performance[J]. Unmanned Systems Technology, 2022, 5(3): 28-39.
    [75] 吕达, 苏浩秦, 李筠, 等. 变形仿生飞翼跨介质无人机外形设计与航行仿真[J]. 兵器装备工程学报, 2022, 43(12): 59-66. doi: 10.11809/bqzbgcxb2022.12.009

    Lyu Da, Su Haoqin, Li Yun, et al. Configuration design and navigation simulation of deformable bionic flying-wing aerial-aquatic unmanned vehicles[J]. Journal of Ordnance Equipment Engineering, 2022, 43(12): 59-66. doi: 10.11809/bqzbgcxb2022.12.009
    [76] Wu Z, Zhang C, Wang J, et al. Water entry of slender segmented projectile connected by spring[J]. Ocean engineering, 2020, 217(1): 108016.
    [77] Fu Z, Sun L, Zhi M, et al. Numerical study on the dynamic characteristics of a vehicle with a multistage load reduction structure during oblique water entry[J]. Ocean engineering, 2024, 295: 116778. doi: 10.1016/j.oceaneng.2024.116778
    [78] Sui Y, Ming F, Wang S, et al. Experimental investigation on the impact force of the oblique water entry of a slender projectile with spring buffer[J]. Applied Ocean Research, 2023, 138: 103631. doi: 10.1016/j.apor.2023.103631
    [79] 刘晗聪. 回转体高速入水缓冲降载研究[D]. 哈尔滨工程大学, 2021.
    [80] 王禹开. 高速弹体入水缓冲降载研究[D]. 哈尔滨工程大学, 2022.
    [81] 肖睿, 魏继锋, 吉耿杰, 等. 前抛体对弹体入水载荷影响数值模拟研究[J]. 爆炸与冲击, 2023, 43(4): 67-80. doi: 10.11883/bzycj-2022-0431

    Xiao Rui, Wei Jifeng, Ji Gengjie, et al. Numerical research on the effect of front body on water-entry load of a projectile[J]. Explosion and Shock Waves, 2023, 43(4): 67-80. doi: 10.11883/bzycj-2022-0431
    [82] Rabbi R, Speirs N B, Kiyama A, et al. Impact force reduction by consecutive water entry of spheres[J]. Journal of Fluid Mechanics, 2021, 915.
    [83] Lyu X, Yun H, Wei Z. Influence of time interval on the water entry of two spheres in tandem configuration[J]. Experiments in Fluids, 2021, 62(11): 1-9.
    [84] Lyu X, Wang X, Yun H, et al. On water-entry modes of the latter sphere in tandem configuration with two spheres[J]. Journal of Fluids and Structures, 2022, 112: 103601. doi: 10.1016/j.jfluidstructs.2022.103601
    [85] Zhi M, Li Z, Sun L, et al. Investigation and optimization of load characteristics of a multi-stage load-reduction structure for vehicles during high-speed vertical water entry[J]. Ocean Engineering, 2023, 289: 116183. doi: 10.1016/j.oceaneng.2023.116183
  • 加载中
图(23)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  5
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-20
  • 修回日期:  2024-05-13
  • 录用日期:  2024-05-13
  • 网络出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    服务号
    订阅号