• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨介质航行器入水过程数值仿真

刘平安 高宏涛 杨彦熙 黄曦 高崧 嵇振涛

刘平安, 高宏涛, 杨彦熙, 等. 跨介质航行器入水过程数值仿真[J]. 水下无人系统学报, 2024, 32(3): 1-12 doi: 10.11993/j.issn.2096-3920.2024-0023
引用本文: 刘平安, 高宏涛, 杨彦熙, 等. 跨介质航行器入水过程数值仿真[J]. 水下无人系统学报, 2024, 32(3): 1-12 doi: 10.11993/j.issn.2096-3920.2024-0023
LIU Pingan, GAO Hongtao, Yang Yanxi, HUANG Xi, GAO Song, JI Zhentao. Numerical simulation study on the water entry process of the hybrid underwater vehicle[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0023
Citation: LIU Pingan, GAO Hongtao, Yang Yanxi, HUANG Xi, GAO Song, JI Zhentao. Numerical simulation study on the water entry process of the hybrid underwater vehicle[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0023

跨介质航行器入水过程数值仿真

doi: 10.11993/j.issn.2096-3920.2024-0023
详细信息
    作者简介:

    刘平安(1982-), 男, 博士, 教授, 主要研究方向为水下超空泡航行体及跨介质技术

  • 中图分类号: U661.1; TJ630.1

Numerical simulation study on the water entry process of the hybrid underwater vehicle

  • 摘要: 跨介质远程突防技术可以兼具空中远程打击和水下高突防率的特点, 具有很高的研究价值。然而, 航行器的跨介质入水过程往往伴随着多相流、空化、相变及湍流不稳定性, 会加剧流场的复杂性, 其所受的作用力还呈现出较强的非定常和非线性, 亟需深入研究。文中建立了航行器入水过程的数值计算模型, 采用流体体积(VOF)模型对气液交界面捕捉, 使用Schnerr-Sauer模型对跨介质过程中产生的空化过程进行描述。对航行器在不同空化器转角以及通气流量条件下的跨介质入水过程进行仿真计算, 研究了导弹跨介质过程中的流场和空泡演化规律, 分析并得到了航行器跨介质过程中的流体动力学特性以及运动特性。仿真结果表明, 航行器在入水过程中会随着通气量的变化而呈现出2种不同的姿态变化模式: 增角速度拉平模式和周期俯仰式拉平模式, 不同模式下航行器的入水拉平过程会呈现不同运动特点。此外, 空化器倾角的增加和通气流量的降低可以提高航行器在跨介质入水过程中的姿态变化速率。

     

  • 图  1  航行器模型尺寸示意图

    Figure  1.  Schematic diagram of the size of the missile body model

    图  2  背景区域边界条件示意图

    Figure  2.  Schematic diagram of background region boundary conditions

    图  3  航行器区域边界条件示意图

    Figure  3.  Schematic diagram of the boundary conditions of the missile body region

    图  4  试验弹模型及网格

    Figure  4.  Model and mesh of the test projectile

    图  5  试验弹入水试验与仿真的气液交界面变化

    Figure  5.  Variation of gas-liquid interface between the test projectile in water test and simulation

    图  6  试验与仿真对比曲线

    Figure  6.  Comparative validation of test and simulation

    图  7  不同网格数量下的航行器径向力矩时变曲线图

    Figure  7.  Time varying curves of radial torque of spacecraft under different grid quantities

    图  8  不同网格数量下的航行器速度时变曲线图

    Figure  8.  Curve of the velocity of the vehicle over time with different number of grids

    图  9  不同网格数量下的航行器位移时变曲线图

    Figure  9.  Diagram of displacement variation of vehicle under different grid quantities

    图  10  航行器初始状态说明

    Figure  10.  Description of initial conditions of the vehicle

    图  11  不同通气率条件下航行器俯仰角变化曲线

    Figure  11.  Changes in pitch angle of vehicle under different ventilation rates

    图  12  工况1的航行器在典型时刻的空泡图

    Figure  12.  Cavity diagram of the vehicle under operating condition 1 at typical moments

    图  13  不同通气流率下拉平时刻的空泡轮廓

    Figure  13.  Cavity contour at flattening time under different ventilation flow rate conditions

    图  14  不同通气率下航行器入水弹道曲线

    Figure  14.  Water entry trajectory curves of vehicle under different ventilation rates

    图  15  不同通气量条件下航行器径向力时变曲线

    Figure  15.  Time varying curves of radial force on vehicle under different ventilation conditions

    图  16  大通气量条件下航行器径向力的时变曲线

    Figure  16.  The time-varying curve of radial force of vehicle under high gas flow conditions

    图  17  不同通气量条件下航行器角速度和攻角时变曲线

    Figure  17.  Time varying curves of vehicle angular velocity and angle of attack under different ventilation conditions

    图  18  大通气量条件下航行器角速度和攻角时变曲线

    Figure  18.  Time-varying curves of vehicle angular velocity and angle of attack under high gasflow conditions

    图  19  不同工况下航行器俯仰角时变曲线

    Figure  19.  The time-varying curve of the pitch angle of the vehicle under different operating conditions

    图  20  不同工况下航行器径向力变化曲线

    Figure  20.  Radial force variation curve of vehicle under different operating conditions

    图  21  不同工况下航行器入水弹道曲线

    Figure  21.  Water entry trajectory curves of vehicle under different operating conditions

    图  22  不同工况下航行器角速度和攻角时变曲线

    Figure  22.  Time varying curves of angular velocity and angle of attack of vehicle under different operating conditions

    图  23  不同空化器转角条件下航行器径向力的时变曲线

    Figure  23.  Time-varying curves of radial force on the vehicle under various deflection angles of cavitator

    图  24  不同空化器转角条件下航行器入水弹道曲线

    Figure  24.  Water entry trajectory curves for the vehicle with various deflection angles of cavitator

    图  25  不同空化器转角条件下航行器角速度和攻角时变曲线

    Figure  25.  Time varying curves of vehicle angular velocity and angle of attack under different deflection angles of cavitator

    表  1  不同通气流量计算工况表

    Table  1.   Table of different ventilation flow calculation conditions

    工况 通气
    系数
    入水角度/(°) 空化器
    角度/(°)
    初始速度
    /(m/s)
    1 0.249 20 25 100
    2 0.497
    3 0.746
    4 0.994
    5 1.243
    6 1.492
    下载: 导出CSV

    表  2  小通气量条件下的计算工况表

    Table  2.   Table of calculation working conditions

    工况标记空化器角度
    /(°)
    入水角度
    /(°)
    通气系数初始速度
    /(m/s)
    110200.249100
    215
    320
    425
    下载: 导出CSV

    表  3  大通气量条件下的计算工况表

    Table  3.   Calculation working condition table for different deflection angles of cavitator

    工况标记空化器角度
    /(°)
    入水角度
    /(°)
    通气系数初始速度
    /(m/s)
    H110201.492100
    H215
    H320
    H425
    下载: 导出CSV
  • [1] 魏洪亮, 陆宏志, 赵静, 等. 水下发射航行器跨介质动态载荷预报研究[J]. 导弹与航天运载技术, 2016(2): 77-80.

    Wei Hongliang, Lu Hongzhi, Zhao Jing, et al. Study on dynamic load prediction of trans-media underwater launching vehicle[J]. Missiles and Space Vehicles, 2016(2): 77-80.
    [2] Karman T V. The impact of seaplane floats during landing: NACA-TN-321[R]. Washington, US: National Technical Information Service, 1929.
    [3] Wagner H. Phenomena associated with impacts and sliding on liquid surfaces[J]. J. Appl. Math. Mech, 1932, 12(4): 193-215.
    [4] Yu Y T. Virtual masses of rectangular plates and parallelepipeds in water[J]. Journal of Applied Physics, 1945, 16(11): 724-729. doi: 10.1063/1.1707527
    [5] Watanabe. Analytical expansion of hydrodynamic impact pressure by matched asymptotic expansion technique (summaries of papers published by staff of ship research institute at outside organizations)[R]. Report of Ship Research Institute, 1986.
    [6] Logvinovich G V, Buyvol V N, Dudko. Free boundary flows[M]. Kiev, Russian: Naukova Dumka Publishing House, 2012.
    [7] Worthington A M, Cole R S. Impact with a liquid surface, studied by the aid of instantaneous photography[J]. Proceedings of the Royal Society of London. 1899, 65(1): 153-154.
    [8] Truscott T T. Cavity dynamics of water entry for spheres and ballistic projectiles[D]. Boston: Ph. D. Dissertation from Massachusetts Institute of Technology, 2009.
    [9] 杨晓光, 党建军, 王鹏, 等. 波浪对航行器高速入水载荷特性影响[J]. 兵工学报, 2022, 43(2): 355-362.

    Yang Xiaoguang, Dang Jianjun, Wang Peng, et al. The influence of waves on the impact load during high-speed water-entry of a vehicle[J]. Acta Armamentarii, 2022, 43(2): 355-362.
    [10] 周可, 黄振贵, 陈志华, 等. 跨介质航行器高速斜入水跳弹现象研究[J]. 装备环境工程, 2022, 19(5): 39-48. doi: 10.7643/issn.1672-9242.2022.05.005

    Zhou Ke, Huang Zhengui, Chen Zhihua, et al. A study on the phenomenon of high speed oblique underwater diving of a cross media vehicle[J]. Equipment Environmental Engineering, 2022, 19(5): 39-48. doi: 10.7643/issn.1672-9242.2022.05.005
    [11] Jiang Y H, Zou Z H, Li J, et al. Numerical analysis of a ventilated supercavity under periodic motion of the cavitator[J]. Journal of Hydrodynamics, 2021, 33(6): 1216-1229. doi: 10.1007/s42241-021-0103-z
    [12] Zhang Q, Zong Z, Sun T Z, et al. Characteristics of cavity collapse behind a high-speed projectile entering the water[J]. Physics of Fluids, 2021, 33(6): 62110. doi: 10.1063/5.0053409
    [13] 郝常乐, 党建军, 陈长盛, 等. 基于双向流固耦合的超空泡射弹入水研究[J]. 力学学报, 2022, 54(3): 678-687. doi: 10.6052/0459-1879-21-510

    Hao Changle, Dang Jianjun, Chen Changsheng, et al. A study on the water entry of supercavitating projectiles based on bidirectional fluid structure coupling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 678-687 doi: 10.6052/0459-1879-21-510
    [14] Kubota A, Kato H, Yamaguchi H. A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section[J]. Journal of fluid Mechanics, 1992, 240: 59-96. doi: 10.1017/S002211209200003X
    [15] Schnerr G H, Sauer J. Physical and numerical modeling of unsteady cavitation dynamics[C]//Fourth international conference on multiphase flow. New Orleans, LO, USA: ICMF New Orleans, 2001, 1.
    [16] Truscott T T. Cavity dynamics of water entry for spheres and ballistic projectiles[D]. Boston: Ph. D. Dissertation from Massachusetts Institute of Technology, 2009.
  • 加载中
图(25) / 表(3)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  12
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-19
  • 修回日期:  2024-05-11
  • 录用日期:  2024-05-11
  • 网络出版日期:  2024-05-23

目录

    /

    返回文章
    返回
    服务号
    订阅号