• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种面向任务的海空跨域网络路由协议

张皓波 王彪 韩兆越

张皓波, 王彪, 韩兆越. 一种面向任务的海空跨域网络路由协议[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0015
引用本文: 张皓波, 王彪, 韩兆越. 一种面向任务的海空跨域网络路由协议[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0015
ZHANG Haobo, WANG Biao, HAN Zhaoyue. A Task-Oriented Routing Protocol for Sea-Air Cross-Domain Networks[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0015
Citation: ZHANG Haobo, WANG Biao, HAN Zhaoyue. A Task-Oriented Routing Protocol for Sea-Air Cross-Domain Networks[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0015

一种面向任务的海空跨域网络路由协议

doi: 10.11993/j.issn.2096-3920.2024-0015
基金项目: 国家自然科学基金项目资助(52071164).
详细信息
    作者简介:

    张皓波(1998-), 男, 在读硕士, 主要研究方向为水下传感器网络

  • 中图分类号: TJ630

A Task-Oriented Routing Protocol for Sea-Air Cross-Domain Networks

  • 摘要: 随着海洋和空中作业的日益增多, 海空跨域网络成为了实现有效通信的关键技术。这类网络由水下子网和水上子网构成, 为了充分利用资源, 多种不同的应用程序将共享相同的物理设施。在这种场景下, 不同的数据包共存于同一网络中, 需要差异化的传送策略来满足应用需求。然而, 现有的路由协议往往无法根据应用需求来提供个性化的服务, 针对该问题, 文中提出了一种面向任务的海空跨域网络路由协议, 协议根据任务类型的不同调整转发因子的计算方式, 进而根据为特定的任务类型选择最合适的下一跳节点。此外, 文中还在协议栈中增加了预处理层来完成异构网络之间的通信。文中使用NS3(Network Simulator 3)进行了仿真, 仿真结果表明, 与其他典型的协议相比, 文中所提的协议总是能根据任务的特定需求实现最优的传输策略。

     

  • 图  1  海空跨域网络场景图

    Figure  1.  The scenario diagram of SACD

    图  2  海空跨域网络结构图

    Figure  2.  The architecture diagram of SACD

    图  3  预处理层工作原理图

    Figure  3.  Working principle diagram of preprocessing layer

    图  4  节点数对平均端到端时延的影响

    Figure  4.  Influence of node number on the average end-to-end delay

    图  5  流速对平均端到端时延的影响

    Figure  5.  Influence of velocity on the average end-to-end delay

    图  6  节点数对总能耗的影响

    Figure  6.  Influence of node number on the energy consumption

    图  7  流速对总能耗的影响

    Figure  7.  Influence of velocity on the energy consumption

    图  8  节点数对网络寿命的影响

    Figure  8.  Influence of node number on the network lifetime

    图  9  水面流速对网络寿命的影响

    Figure  9.  Influence of velocity on the network lifetime

    表  1  仿真参数设置

    Table  1.   Simulation parameter settings

    参数
    部署区域 ${\text{1}}{\text{.5}} \times {\text{1}}{\text{.5}} \times {\text{1}}{\text{.5}}\;{{\mathrm{km}}^3}$
    水下源节点数目 1
    水下中继节点数目 100-500
    浮标节点数目 5
    无人机节点数目 5
    数据负载 50 Byte
    数据包发送间隔 40 s
    能量模型 ns3::AquaSimEnergyModel
    噪声模型 ns3::AquaSimConstNoiseGen
    水上Mac ns3:: AdhocWifiMac
    水下Mac ns3::AquaSimBroadcastMac
    水上物理层模型 ns3::YansWifiPhy
    水下物理层模型 ns3::AquaSimPhyCmn
    下载: 导出CSV
  • [1] Kong M, Kang C H, Alkhazragi O, et al. Survey of energy-autonomous solar cell receivers for satellite–air–ground–ocean optical wireless communication[J]. Progress in Quantum Electronics, 2020, 74: 100300. doi: 10.1016/j.pquantelec.2020.100300
    [2] Enhos K, Demirors E, Unal D, et al. Software-defined visible light networking for bi-directional wireless communication across the air-water interface[C]//18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). Rome, Italy: IEEE, 2021: 1-9.
    [3] Carver C J, Tian Z, Zhang H, et al. Amphilight: Direct air-water communication with laser light[J]. GetMobile: Mobile Computing and Communications, 2021, 24(3): 26-29. doi: 10.1145/3447853.3447862
    [4] Luo H, Xie X, Han G, et al. Multimodal acoustic-RF adaptive routing protocols for underwater wireless sensor networks[J]. IEEE Access, 2019, 7: 134954-134967. doi: 10.1109/ACCESS.2019.2942060
    [5] 商志刚, 徐晓帆, 梁萱卓, 等. 基于卫星链路的空海跨域通信系统设计[J]. 信息通信技术与政策, 2021, (10): 63-67.

    Shang Zhigang, Xu Xiaofan, Liang Zhuoxuan, et al. Design of air-sea cross-domain communication system based on satellite links[J] Information and Communications Technology and Policy, 2021, (10): 63-67.
    [6] 李壮, 孔军, 刘鹏, 等. 水下智能跨域异构网络设计[J]. 舰船科学技术, 2020, 42(23): 137-140.

    Li Zhuang, Kong Jun, Liu Peng, et al. Design of underwater intelligent cross domain heterogeneous network[J]. Ship Science and Technology, 2020, 42(23): 137-140.
    [7] Guo H, Li J, Liu J, et al. A survey on space-air-ground-sea integrated network security in 6G[J]. IEEE Communications Surveys & Tutorials, 2021, 24(1): 53-87.
    [8] Qiu T, Chen N, Li K, et al. Heterogeneous ad hoc networks: Architectures, advances and challenges[J]. Ad Hoc Networks, 2017, 55: 143-152. doi: 10.1016/j.adhoc.2016.11.001
    [9] 罗汉江, 卜凡峰, 王京龙, 等. 海洋物联网水面及水下多模通信技术研究进展[J]. 山东科技大学学报(自然科学版), 2023, 42(1): 79-90.

    Luo Hanjiang, Bu Fanfeng, Wang Jinglong, et al. Research progress of surface and underwater multimodal communication technology of marine internet of things[J]. Journal of Shandong University of Science and Technology(Natural Science), 2023, 42(1): 79-90.
    [10] Luo H, Wang J, Bu F, et al. Recent progress of air/water cross-boundary communications for underwater sensor networks: a review[J]. IEEE Sensors Journal, 2022, 22(9): 8360-8382. doi: 10.1109/JSEN.2022.3162600
    [11] Chen L K, Shao Y, Di Y. Underwater and water-air optical wireless communication[J]. Journal of Lightwave Technology, 2022, 40(5): 1440-1452. doi: 10.1109/JLT.2021.3125140
    [12] Zhu S, Chen X, Liu X, et al. Recent progress in and perspectives of underwater wireless optical communication[J]. Progress in Quantum Electronics, 2020, 73: 100274. doi: 10.1016/j.pquantelec.2020.100274
    [13] Ji Z, Fu Y, Li J, et al. Photoacoustic communication from the air to underwater based on low-cost passive relays[J]. IEEE Communications Magazine, 2021, 59(1): 140-143. doi: 10.1109/MCOM.001.2000607
    [14] Qu F, Qian J, Wang J, et al. Cross-medium communication combining acoustic wave and millimeter wave: Theoretical channel model and experiments[J]. IEEE Journal of Oceanic Engineering, 2021, 47(2): 483-492.
    [15] Wang H, Yang K, Zheng K, et al. Experimental investigation on electromagnetic wave propagation across sea-to-air interface[C]//OCEANS 2014, Institute of Electrical and Electronics Engineers, Taipei: Taiwan, 2014, 1-6
    [16] Watson M C, Bousquet J F, Forget A. Evaluating the Feasibility of Magnetic Induction to Cross the Air-Water Boundary[C]//2021 Fifth Underwater Communications and Networking Conference (UComms). Lerici, Italy, 2021, 1-4.
    [17] Pal A, Kant K. NFMI: Near field magnetic induction based communication[J]. Computer Networks, 2020, 181(9): 107548.
    [18] 李从改, 刘锋, 徐涴砯, 等. 智能水下应急通信一体化探讨[J]. 数字海洋与水下攻防, 2022, 5(4): 285-292.

    Li Conggai, Liu Feng, Xu Wanping, et al. Discussion on Integration of Intelligent Underwater Emergency Communication[J]. Digital Ocean& Underwater Warfare, 2022, 5(4): 285-292.
    [19] Liu J, Du X, Cui J, et al. Task-oriented intelligent networking architecture for the space–air–ground–aqua integrated network[J]. IEEE Internet of Things Journal, 2020, 7(6): 5345-5358. doi: 10.1109/JIOT.2020.2977402
    [20] Wang Q, Dai H N, Wang Q, et al. On connectivity of UAV-assisted data acquisition for underwater Internet of Things[J]. IEEE Internet of Things Journal, 2020, 7(6): 5371-5385. doi: 10.1109/JIOT.2020.2979691
    [21] Wang B, Zhang H, Zhu Y, et al. Adaptive Power-Controlled Depth-Based Routing Protocol for Underwater Wireless Sensor Networks[J]. Journal of Marine Science and Engineering, 2023, 11(8): 1567. doi: 10.3390/jmse11081567
    [22] PERRONE L F, HENDERSON T R, WATROUS M, et al. The design of an output data collection framework for NS-3[C]//2013 Winter Simulation Conference : SIMULATION : Making Decisions in a Complex World: 2013 Winter Simulation Conference (WSC 13), Washington, DC: Institute of Electrical and Electronics Engineers, 2013: 2984-2995.
    [23] Yan H, Shi Z J, Cui J H. DBR: Depth-based routing for underwater sensor networks[C]//NETWORKING 2008 Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet: 7th International IFIP-TC6 Networking Conference Singapore, May 5-9, 2008 Proceedings 7. Springer Berlin Heidelberg, 2008, 72-86.
    [24] Wahid A, Lee S, Jeong H J, et al. Eedbr: Energy-efficient depth-based routing protocol for underwater wireless sensor networks[C]//Advanced Computer Science and Information Technology: Third International Conference, AST 2011, Seoul, Korea, September 27-29, 2011. Proceedings. Springer Berlin Heidelberg, 2011, 223-234.
    [25] Wang Z, Han G, Qin H, et al. An energy-aware and void-avoidable routing protocol for underwater sensor networks[J]. Ieee Access, 2018, 6: 7792-7801. doi: 10.1109/ACCESS.2018.2805804
    [26] Martin R, Zhu Y, Pu L, et al. Aqua-sim next generation: A NS-3 based simulator for underwater sensor networks[C]//Proceedings of the 10th International Conference on Underwater Networks & Systems., Washington, DC, USA: Association for Computing Machinery, 2015, 1-2.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  7
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-13
  • 修回日期:  2024-04-09
  • 录用日期:  2024-04-15
  • 网络出版日期:  2024-06-06

目录

    /

    返回文章
    返回
    服务号
    订阅号