• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单目相机的深海微地形地貌高精度三维重建

曹又文 刘庆省 魏自浩 张喜林 孙治雷 卢泽宇 郭金家

曹又文, 刘庆省, 魏自浩, 等. 基于单目相机的深海微地形地貌高精度三维重建[J]. 水下无人系统学报, 2023, 31(4): 640-647 doi: 10.11993/j.issn.2096-3920.2023-0081
引用本文: 曹又文, 刘庆省, 魏自浩, 等. 基于单目相机的深海微地形地貌高精度三维重建[J]. 水下无人系统学报, 2023, 31(4): 640-647 doi: 10.11993/j.issn.2096-3920.2023-0081
CAO Youwen, LIU Qingsheng, WEI Zihao, ZHANG Xilin, SUN Zhilei, LU Zeyu, GUO Jinjia. High-Precision Three-dimensional Reconstruction of Deep-Sea Microtopography Based on Monocular Camera[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 640-647. doi: 10.11993/j.issn.2096-3920.2023-0081
Citation: CAO Youwen, LIU Qingsheng, WEI Zihao, ZHANG Xilin, SUN Zhilei, LU Zeyu, GUO Jinjia. High-Precision Three-dimensional Reconstruction of Deep-Sea Microtopography Based on Monocular Camera[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 640-647. doi: 10.11993/j.issn.2096-3920.2023-0081

基于单目相机的深海微地形地貌高精度三维重建

doi: 10.11993/j.issn.2096-3920.2023-0081
基金项目: 国家重点研发计划项目(2022YFC2807700); 崂山实验室科技创新项目(LSKJ202203500)
详细信息
    作者简介:

    曹又文(1998-), 男, 在读硕士, 主要研究方向为水下三维成像

    通讯作者:

    郭金家(1979-), 男, 教授级高级工程师, 主要研究方向为海洋激光探测技术

  • 中图分类号: U674.76; TJ630.34

High-Precision Three-dimensional Reconstruction of Deep-Sea Microtopography Based on Monocular Camera

  • 摘要: 在深海矿产资源勘查和极端环境探测中, 利用光学相机搭载水下移动平台获取海底的光学影像资料成为当前深海精细探测的重要方式。文中针对深海微地形地貌的高精度探测需求, 开展了基于单目相机的深海微地形地貌高精度三维重建方法研究。通过水下遥控航行器搭载的单目相机, 获取了我国海域水合物赋存区的大量图像, 基于此, 利用运动恢复结构方法建立了典型海域内沙波区、碳酸盐岩区和冷泉区的海底三维模型, 精细刻画出区域内的地形地貌特征和生物生态信息。研究结果表明, 文中方法可为深海表生矿产资源勘查和极端环境探测提供重要支撑。

     

  • 图  1  搭载在ROV上的单目相机

    Figure  1.  Monocular camera mounted on ROV

    图  2  图像增强流程图

    Figure  2.  Flowchart of image enhancement

    图  3  不同增强方法预处理后的图像

    Figure  3.  Images after preprocessing with different enhancement methods

    图  4  基于SFM的海底成像示意图

    Figure  4.  SFM-based seafloor imaging

    图  5  全局式SFM三维重建流程

    Figure  5.  3D reconstruction by global SFM

    图  6  视频流中拆分出的部分图像数据集

    Figure  6.  Partial image dataset split from video stream

    图  7  海底稀疏点云

    Figure  7.  Sparse point cloud of seafloor

    图  8  海底稠密点云

    Figure  8.  Dense point cloud of seafloor

    图  9  泊松表面重建及纹理映射图

    Figure  9.  Poisson surface reconstruction and texture mapping map

    图  10  稀疏点云到密集点云的重建结果对比

    Figure  10.  Comparison of reconstruction results from sparse to dense point clouds

    图  11  点云数据应用于不同重建方法的结果对比

    Figure  11.  Comparison of results of point cloud data applied to different reconstruction methods

    图  12  沙波区的三维重建结果

    Figure  12.  3D reconstruction result of sand wave area

    图  13  碳酸盐结核发育区的三维重建结果

    Figure  13.  3D reconstruction result of carbonate nodule growth area

    图  14  碳酸盐结壳发育区的三维重建结果

    Figure  14.  3D reconstruction result of carbonate crust growth area

    图  15  冷泉区的三维重建结果

    Figure  15.  3D reconstruction result of cold spring area

    图  16  不同旋转视角下的三维重建结果展示

    Figure  16.  3D reconstruction result under different rotating views

    表  1  重建结果相关参数

    Table  1.   Relevant parameters for reconstruction results

    点云模型稀疏重建
    点云数
    密集重建后
    点云数
    平均重投影
    误差
    海底岩石重建点云44 839961 7460.18
    海底沙坡重建点云22 053760 4210.21
    海底局部重建点云94 6121 346 1010.12
    下载: 导出CSV

    表  2  不同算法的三维重建评估指标

    Table  2.   3D reconstruction evaluation indexes for different algorithms

    重建评估指标传统PSRDelaunay
    三角剖分
    添加屏蔽
    因子的PSR
    最大偏差/mm0.160.130.11
    平均偏差距离/mm0.080.070.06
    标准偏差/mm0.090.060.07
    均方根误差/mm0.110.080.06
    重建所需时间/s680322486
    下载: 导出CSV
  • [1] 王新伟, 孙亮, 王敏敏, 等. 水下二维及三维距离选通成像去噪技术研究[J]. 红外与激光工程, 2020, 49(2): 15-25.

    Wang Xinwei, Sun Liang, Wang Minmin, et al. Deblurring methods for underwater 2D and 3D range-gated imaging[J]. Infrared and Laser Engineering, 2020, 49(2): 15-25.
    [2] 范承成, 德晓薇, 郭金家, 等. 基于三角位移法姿态矫正的激光线扫描海底地形三维测绘[J]. 光学精密工程, 2022, 30(10): 1170-1180. doi: 10.37188/OPE.20223010.1170

    Fan Chengcheng, De Xiaowei, Guo Jinjia, et al. 3D mapping of submarine topography by laser line scanning based on pose correction by triangular displacement method[J]. Optics and Precision Engineering, 2022, 30(10): 1170-1180. doi: 10.37188/OPE.20223010.1170
    [3] 徐国权, 李广英, 万建伟, 等. 脉冲调制激光雷达水下成像系统[J]. 红外与激光工程, 2022, 51(3): 264-271.

    Xu Guoquan, Li Guangying, Wan Jianwei, et al. Underwater imaging system of pulse modulated lidar[J]. Infrared and Laser Engineering, 2022, 51(3): 264-271.
    [4] 谢亮亮, 屠大维, 张旭, 等. 深海原位激光扫描双目立体视觉成像系统[J]. 仪器仪表学报, 2020, 41(6): 106-114.

    Xie Liangliang, Tu Dawei, Zhang Xu, et al. Deep sea in-situ binocular stereo vision imaging system with laser scanning[J]. Chinese Journal of Scientific Instrument, 2020, 41(6): 106-114.
    [5] Bayley D T I, Mogg A O M. A protocol for the largescale analysis of reefs using structure from motion photogrammetry[J]. Methods in Ecology and Evolution, 2020, 11(11): 1410-1420. doi: 10.1111/2041-210X.13476
    [6] Ham H, Wesley J, Hendra H. Computer vision based 3D reconstruction: A review[J]. International Journal of Electrical and Computer Engineering, 2019, 9(4): 2394.
    [7] Gonçalves J A, Henriques R. UAV photogrammetry for topographic monitoring of coastal areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 104: 101-111. doi: 10.1016/j.isprsjprs.2015.02.009
    [8] Ryan J C, Hubbard A L, Box J E, et al. UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet[J]. The Cryosphere, 2015, 9(1): 1-11. doi: 10.5194/tc-9-1-2015
    [9] Woodget A S, Carbonneau P E, Visser F, et al. Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry[J]. Earth Surface Processes and Landforms, 2015, 40(1): 47-64. doi: 10.1002/esp.3613
    [10] Niethammer U, James M R, Rothmund S, et al. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results[J]. Engineering Geology, 2012, 128: 2-11. doi: 10.1016/j.enggeo.2011.03.012
    [11] Castillo C, Pérez R, James M R, et al. Comparing the accuracy of several field methods for measuring gully erosion[J]. Soil Science Society of America Journal, 2012, 76(4): 1319-1332. doi: 10.2136/sssaj2011.0390
    [12] Robert K, Huvenne V A I, Georgiopoulou A, et al. New approaches to high-resolution mapping of marine vertical structures[J]. Scientific reports, 2017, 7(1): 1-14. doi: 10.1038/s41598-016-0028-x
    [13] Teague J, Miles J, Connor D, et al. Exploring offshore hydrothermal venting using low-cost ROV and photogrammetric techniques: A case study from Milos Island, Greece[EB/OL]. (2017-10-03)[2023-05-01]. https://doi.org/10.20944/preprints201710.0014.v2.
    [14] Wright A E, Conlin D L, Shope S M. Assessing the accuracy of underwater photogrammetry for archaeology: A comparison of structure from motion photogrammetry and real time kinematic survey at the east key construction wreck[J]. Journal of Marine Science and Engineering, 2020, 8(11): 849. doi: 10.3390/jmse8110849
    [15] Burns J H R, Delparte D, Gates R D, et al. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs[EB/OL]. PeerJ, (2016-08-01)[2023-07-03]. https://www.docin.com/p-1693845315.html
    [16] 李硕, 刘健, 徐会希, 等. 我国深海自主水下机器人的研究现状[J]. 中国科学: 信息科学, 2018, 48(9): 1152-1164. doi: 10.1360/N112017-00264

    Li Shuo, Liu Jian, Xu Huixi, et al. Research status of autonomous underwater vehicles in China[J]. Scientia Sinica Informationis, 2018, 48(9): 1152-1164. doi: 10.1360/N112017-00264
    [17] Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 32(8): 1362-1376.
    [18] Kazhdan M, Bolitho M, Hoppe H. Poisson surface reconstruction[C]//Proceedings of the Fourth Eurographics Symposium on Geometry Processing(SGP). Cagliari, Sardinia, Italy: [s.n.], 2006: 61-70.
    [19] 何家雄, 钟灿鸣, 姚永坚, 等. 南海北部天然气水合物勘查试采及研究进展与勘探前景[J]. 海洋地质前沿, 2020, 36(12): 1-14. doi: 10.16028/j.1009-2722.2020.127

    He Jiaxiong, Zhong Canming, Yao Yongjian, et al. The exploration and production test of gas hydrate and its research progress and exploration prospect in the Northern South China Sea[J]. Marine Geological Frontiers, 2020, 36(12): 1-14. doi: 10.16028/j.1009-2722.2020.127
    [20] 张伟, 梁金强, 何家雄, 等. 南海北部陆坡泥底辟/气烟囱基本特征及其与油气和水合物成藏关系[J]. 海洋地质前沿, 2017, 33(7): 11-23. doi: 10.16028/j.1009-2722.2017.07002

    Zhang Wei, Liang Jinqiang, He Jiaxiong, et al. Characteristics of mud diapir and gas chimney and their relationship with reservoir forming for petroleum and national gas hydrate on northern slope of the South China Sea[J]. Marine Geological Frontiers, 2017, 33(7): 11-23. doi: 10.16028/j.1009-2722.2017.07002
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  14
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 修回日期:  2023-07-31
  • 录用日期:  2023-08-03
  • 网络出版日期:  2023-08-09

目录

    /

    返回文章
    返回
    服务号
    订阅号