• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下电场测量技术研究综述

陈凯 罗贤虎 苏建业 孙珍 田稷 邓显明

陈凯, 罗贤虎, 苏建业, 等. 水下电场测量技术研究综述[J]. 水下无人系统学报, 2023, 31(4): 527-544 doi: 10.11993/j.issn.2096-3920.2023-0070
引用本文: 陈凯, 罗贤虎, 苏建业, 等. 水下电场测量技术研究综述[J]. 水下无人系统学报, 2023, 31(4): 527-544 doi: 10.11993/j.issn.2096-3920.2023-0070
CHEN Kai, LUO Xianhu, SU Jianye, SUN Zhen, TIAN Ji, DENG Xianming. Overview of Underwater Electric Filed Measurement Technology Research[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 527-544. doi: 10.11993/j.issn.2096-3920.2023-0070
Citation: CHEN Kai, LUO Xianhu, SU Jianye, SUN Zhen, TIAN Ji, DENG Xianming. Overview of Underwater Electric Filed Measurement Technology Research[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 527-544. doi: 10.11993/j.issn.2096-3920.2023-0070

水下电场测量技术研究综述

doi: 10.11993/j.issn.2096-3920.2023-0070
基金项目: 2023年广东省海洋经济发展专项(GDNRC[2023]40); 国家自然科学基金(42174081、41804071); 慧眼行动计划项目(62602010133)
详细信息
    作者简介:

    陈凯:陈 凯(1984-), 男, 博士, 副教授, 主要研究方向为地球物理仪器研究与应用

  • 中图分类号: TJ630.34; U674

Overview of Underwater Electric Filed Measurement Technology Research

  • 摘要: 水下电场具有场源复杂、动态范围大、频带宽的特征, 高精度观测难度大, 对观测方式、测量传感器、仪器装备和信号处理方法均提出了较高要求。水下电场测量技术广泛应用于水下目标探测、地球物理勘探、深部地质构造研究和物理海洋等多个学科领域。文中简要回顾了水下电场测量技术发展历程; 总结了国内外研究现状; 归纳了水下电场测量技术研究中的关键问题与难点; 综述了水下电场测量技术相关设备、平台和信号处理方法; 分别列举了在水下目标探测、地球物理勘探、深部地质构造研究和物理海洋观测等多个学科领域代表性的应用案例; 分析了当前水下测量技术存在的问题与不足; 在此基础上展望了技术发展前景, 提出了部分建设性建议。

     

  • 图  1  AgCl电极结构

    Figure  1.  Structure of AgCl electrode

    图  2  AgCl电极照片

    Figure  2.  Photo of AgCl electrode

    图  3  电极噪声功率谱密度测试结果

    Figure  3.  Noise power spectrum density test result of electrode

    图  4  多电极极差漂移测试结果(编号A~I)

    Figure  4.  Potential drift test result of multiple electrodes (No. A–I)

    图  5  典型CF电极

    Figure  5.  Typical CF electrodes

    图  6  镍基氧化物薄膜电极

    Figure  6.  Principle of electric field sensor with nickel-based oxide film

    图  7  斩波放大器原理框图

    Figure  7.  Principle of chopper amplifier

    图  8  低注入电荷斩波放大器与传统斩波放大器噪声功率谱密度对比曲线

    Figure  8.  Noise power spectrum density curves of chopper amplifier with low injection charge and traditional chopper ampllifier

    图  9  海床基电场观测设备

    Figure  9.  Seafloor electric field observation equipment

    图  10  MicrOBEM小型海底电磁接收机实物图

    Figure  10.  Photo of MicrOBEM

    图  11  挪威PGS公司的拖曳电磁探测系统

    Figure  11.  Towed electromagnetic detection system from PGS, Norway

    图  12  美国Scripps海洋研究所的深拖可控源电磁探测系统

    Figure  12.  Deep towed electric field measurement device from SIO, USA

    图  13  中国地质大学(北京)的拖曳电场接收机测量节点

    Figure  13.  Towed electric field receiver measurement node from China University of Geosciences (Beijing)

    图  14  浮标平台电场探测装置工作示意图

    Figure  14.  Buoys for electric field detection

    图  15  典型电场浮标

    Figure  15.  Typical electric field buoys

    图  16  电磁浮标结构示意图

    Figure  16.  Structure of electromagnetic buoy

    图  17  AUV平台电场测量

    Figure  17.  Electric field measurement on AUV platform

    图  18  电场强度动态测量示意图

    Figure  18.  Dynamic measurement of electric field intensity

    图  19  直流电阻率剖面方法探测水下目标示意图

    Figure  19.  Direct current resistivity profile method for detecting underwater targets

    图  20  琼东南海域水合物可控源电磁探测电阻率模型

    Figure  20.  Resistivity model of hydrate in southeast sea area of Hainan Province by Controlled Source Electromagnetic detection

    图  21  PGS的EM streamer拖曳系统油气勘探应用案例

    Figure  21.  Oil and gas exploration application case of EMstreamer towing system from PGS

    图  22  西南印度洋硫化物探测自然电位测量应用

    Figure  22.  self-potential measurement application for sulphide detection in southwest Indian Ocean

    图  23  海底深部电阻率模型

    Figure  23.  Deep resistivity model of seafloor

    图  24  2011年日本海底地震引起的海啸电场时间序列

    Figure  24.  Electric field time series of tsunami caused by Japan undersea earthquake in 2011

    表  1  各种水下电极原理及优势对比

    Table  1.   Comparison of principles and advantages of various underwater electrodes

    材质工作原理优势不足
    氯化银 借助海水中氯离子与氯化银离子交换实现电位传递 极差稳定、低噪声、宽频带 维护难、寿命受限、成本高
    碳纤维 利用表面双电层的变化将外界电场转化为电信号 皮实耐用、低成本 低频响应有待提高
    镍基氧化物 氢致相变原理, 外部电场变化导致镍基氧化物薄膜的电阻率变化 单点观测电场, 无需大极距 噪声、带宽有待提升
    钽/氧化钽电极 氧化膜形成双电层电容 适合快速布放、无需特殊保养、长寿命 低频阻抗大
    下载: 导出CSV

    表  2  不同平台电场测量应用场景对比

    Table  2.   Application scenarios of electric field measurement on different platforms

    测量平台典型应用场景优势不足
    海床基 油气、水合物资源探测, 深部构造研究, 水下目标电磁隐身评价 本底噪声低、成本低 实时数据传输难(海底观测网除外)、存在回收风险、作业效率低
    拖曳阵浮标 油气、水合物、硫化物资源探测, 水下目标探测水下目标识别 横向分辨率高、实时数据传输、作业效率高、
    布放快速
    探测深度浅、本底噪声大、信噪比低
    UUV 硫化物资源探测、水下目标攻防 自主移动测量、小范围精细探测 成本高、平台本底噪声抑制难
    下载: 导出CSV

    表  3  MT噪声抑制方法对比表

    Table  3.   Comparison table of MT noise suppression methods

    步骤方法优势不足
    时间序列处理 时域多道叠加 抑制高斯噪声 对相关噪声无效
    形态滤波 抑制大尺度噪声 有用信号可能受影响
    同步时间依赖 直接恢复含干扰数据段 需要足够长度的高信噪比数据为前提
    频谱估计 小波分析 抑制高斯噪声和局部相关噪声 母小波选择难, 对强相关噪声抑制效果不够
    广义S变换 提高噪声定位能力, 改善MT阻抗张量元素的统计特性 仅实现时频分析, 还需借助其他时频滤波方法
    HHT 对简单频率成分噪声有效 对强干扰噪声效果差, 计算量大
    功率谱估计 远参考 有效抑制相关噪声 参考站难选, 可能导致误差棒增大
    多站Robust处理 有效抑制局部相关噪声 以多数高信噪比站位数据为前提
    张量阻抗估算 最小二乘法 抑制高斯噪声 无法剔除少数“飞点”数据
    Robust估计 抑制“飞点”数据 对输入端噪声和相关噪声无效
    下载: 导出CSV
  • [1] Young F B, Gerrard H, Jevons W. On electrical disturbances due to tides and waves[J]. Philosophical Magazine Series, 1920, 6(40): 149-159.
    [2] Cox C S, Filloux J H, Larsen J C. Electromagnetic studies of ocean currents and electrical conductivity below the ocean floor[J]. The Sea, 1971(4): 637-693.
    [3] Filloux J H. Electric field recording on the sea floor with short span instruments[J]. Journal of Geomagnetism and Geoelectricity, 1974, 26(2): 269-279. doi: 10.5636/jgg.26.269
    [4] Filloux J H, Law L K, Yukutake T, et al. Offshore emslab-objectives, experimental phase and early results[J]. Physics of the Earth and Planetary Interiors(in English), 1989, 53(3-4): 422-431. doi: 10.1016/0031-9201(89)90027-7
    [5] Cox C S, Constable S C, Chave A D, et al. Controlled-source electromagnetic sounding of the oceanic lithosphere[J]. Nature, 1986, 320(6057): 52-54. doi: 10.1038/320052a0
    [6] Constable S C, Orange A S, Hoversten G M, et al. Marine magnetotellurics for petroleum exploration part I: a sea-floor equipment system[J]. Geophysics, 1998, 63(3): 816-825. doi: 10.1190/1.1444393
    [7] Key K, Constable S. Broadband marine MT exploration of the East Pacific rise at 9°50′ N[J]. Geophysical Research Letters, 2002, 29(22): 2054-2057.
    [8] Ellingsrud S, Eidesmo T, Johansen S, et al. Remote sensing of hydrocarbon layers by seabed logging (SBL): Results from a cruise offshore angola[J]. The Leading Edge, 2002, 21(10): 972-982. doi: 10.1190/1.1518433
    [9] Bekker. The future of marine CSEM[J]. First Break, 2011, 29(4): 77-81.
    [10] Mattsson J, Engelmark F, Anderson C. Towed streamer EM: The challenges of sensitivity and anisotropy[J]. First Break, 2013, 31(6): 155-159.
    [11] Goto T N, Kasaya T, Machiyama H, et al. A marine deep-towed DC resistivity survey in a methane hydrate area, Japan Sea[J]. Exploration Geophysics, 2008, 39(1): 52-59. doi: 10.1071/EG08003
    [12] Yoshifumi, Kawada, Takafumi, et al. Marine self-potential survey for exploring seafloor hydrothermal ore deposits[J]. Scientific Reports, 2017, 7(1): 13552. doi: 10.1038/s41598-017-13920-0
    [13] Ohsawa M K. A new marine magnetotelluric measurement system in a shallow-water environment for hydrogeological study[J]. Journal of Applied Geophysics, 2014, 100: 23-31. doi: 10.1016/j.jappgeo.2013.10.003
    [14] 魏文博, 邓明, 谭捍东, 等. 我国海底大地电磁探测技术研究的进展[J]. 地震地质, 2001, 23(2): 131-137. doi: 10.3969/j.issn.0253-4967.2001.02.001

    Wei Wenbo, Deng Ming, Tan Handong, et al. Research progress of seabed magnetotelluric detection technology in China[J]. Seismology and Geology, 2001, 23(2): 131-137. doi: 10.3969/j.issn.0253-4967.2001.02.001
    [15] 景建恩, 伍忠良, 邓明, 等. 南海天然气水合物远景区海可控源电磁探测试验[J]. 地球物理学报, 2016, 59(7): 2564-2572.

    Jing Jianen, Wu Zhongliang, Deng Ming, et al. Marine controlled source electromagnetic detection test of natural gas hydrate prospect area in South China Sea[J]. Chinese Journal of Geophysics, 2016, 59(7): 2564-2572.
    [16] 刘昂, 宰学荣, 宰敬喆, 等. 尿素改性碳纤维电场电极制备及电化学性能研究[J]. 材料开发与应用, 2017, 32(4): 19-28.

    Liu Ang, Zai Xuerong, Zai Jingzhe, et al. Preparation and electrochemical properties of urea modified carbon fiber electric field electrode[J]. Development and Application of Materials, 2017, 32(4): 19-28.
    [17] 刘兰军, 周亚涛, 陈家林, 等. 海洋电磁信号超低噪声同步采集系统设计[J]. 现代电子技术, 2022, 45(14): 17-22.

    Liu Lanjun, Zhou Yatao, Chen Jialin, et al. Design of ultra-low noise synchronous acquisition system for marine electromagnetic signal[J]. Modern Electronic Technology, 2022, 45(14): 17-22.
    [18] 李予国, Constable S. 浅水区的瞬变电磁法: 一维数值模拟结果分析[J]. 地球物理学报, 2010, 53(3): 737-742.

    Li Yuguo, Constable S. Transient electromagnetic in shallow water: Insights from 1D modeling[J]. Chinese Journal of Geophysics, 2010, 53(3): 737-742. (in Chinese)
    [19] Duan S, Li Y, Pei J, et al. Carbonate imaging with magnetotellurics in a shallow-water environment, South Yellow Sea, China[J]. Journal of Applied Geophysics, 2020(178): 104076.
    [20] 牟兰. 国外舰船电场特性研究及其在水雷战上的应用[J]. 舰船科学技术, 2012, 34(9): 138-142.

    Mou Lan. Research on electric field characteristics of foreign ships and its application in mine warfare[J]. Ship Science and Technology, 2012, 34(9): 138-142.
    [21] 王进. 舰船电场及国外电场扫雷技术研究现状[J]. 数字海洋与水下攻防, 2019, 2(3): 42-46.

    Wang Jin. Research status of ship electric field and foreign electric field mine sweeping technology[J]. Digital Ocean and Underwater Warfare, 2019, 2(3): 42-46.
    [22] 杨国义. 舰船水下电磁场国外研究现状[J]. 舰船科学技术, 2011, 33(12): 138-143.

    Yang Guoyi. Foreign research status of ship underwater electromagnetic field[J]. Ship Science and Technology, 2011, 33(12): 138-143.
    [23] 龚沈光, 卢新城. 舰船电场特性初步分析[J]. 海军工程大学学报, 2008, 20(2): 1-4, 26.

    Gong Shenguang, Lu Xincheng. Preliminary analysis of ship electric field characteristics[J]. Journal of Naval University of Engineering, 2008, 20(2): 1-4, 26.
    [24] 张伽伟, 熊露, 龚沈光. 运动船舶磁性船体产生的感应电场[J]. 国防科技大学学报, 2015, 37(2): 86-91.

    Zhang Jiawei, Xiong Lu, Gong Shenguang. The induced electric field generated by the magnetic hull of a moving ship[J]. Journal of National University of Defense Technology, 2015, 37(2): 86-91.
    [25] 姜润翔, 史建伟, 龚沈光. 船舶极低频电场信号特性分析[J]. 海军工程大学学报, 2014, 26(75): 5-8.

    Jiang Runxiang, Shi Jianwei, Gong Shenguang. Characteristic analysis of extremely low frequency electric field signal of ship[J]. Journal of Naval University of Engineering, 2014, 26(75): 5-8.
    [26] Webb S C, Constable S C, Cox C S, et al. A seafloor electric field instrument[J]. Journal of Geomagnetism and Geoelectricity, 1985, 37(12): 1115-1129. doi: 10.5636/jgg.37.1115
    [27] Zai X R, Liu A Y H, Tian Y H, et al. Oxidation modification of polyacrylonitrile-based carbon fiber and its electro-chemical performance as marine electrode for electric field test[J]. Journal of Ocean University of China, 2020, 19(2): 361-368. doi: 10.1007/s11802-020-4178-x
    [28] Zhang Z. Perovskite nickelates as electric-field sensors in salt water[J]. Nature, 2018, 553(7686): 68-72. doi: 10.1038/nature25008
    [29] 王志宇, 王顺, 方广有, 等. 一种新型海洋电场传感器的研究与设计[J]. 电子测量技术, 2017, 40(1): 57-61.

    Wang Zhiyü, Wang Shun, Fang Guangyou, et al. Research and design of a new type of ocean electric field sensor[J]. Electronic Measurement Technology, 2017, 40(1): 57-61.
    [30] 邓明, 刘志刚, 白宜诚, 等. 海底电场传感器原理及研制技术[J]. 地质与勘探, 2002(6): 43-47.

    Deng Ming, Liu Zhigang, Bai Yicheng, et al. The principle and development technology of submarine electric field sensor[J]. Geology and Prospecting, 2002(6): 43-47.
    [31] 申振, 宋玉苏, 张磊. 热处理对碳纤维电极性能的影响[J]. 功能材料, 2017, 48(3): 3214-3217.

    Shen Zhen, Song Yüsu, Zhang Lei. Effect of heat treatment on the properties of carbon fiber electrode[J]. Journal of Functional Materials, 2017, 48(3): 3214-3217.
    [32] 申振, 宋玉苏, 王烨煊, 等. Ag/AgCl和碳纤维海洋电场电极的探测特性研究[J]. 仪器仪表学报, 2018, 39(2): 211-217.

    Shen Zhen, Song Yüsu, Wang Yexuan, et al. Study on the detection characteristics of Ag/AgCl and carbon fiber ocean electric field electrodes[J]. Chinese Journal of Scientific Instrument, 2018, 39(2): 211-217.
    [33] 孙久哲, 赵鸿浩, 韩永康, 等. 水合肼掺氮改性碳纤维电极电化学及电场响应性能[J]. 兵工学报, 2022, 43(2): 363-371.

    Sun Jiuzhe, Zhao Honghao, Han Yongkang, et al. Electrochemical and electric field response properties of hydrazine hydrate doped nitrogen modified carbon fiber electrode[J]. Acta Armamentarii, 2022, 43(2): 363-371.
    [34] 贾理男, 富一博, 赵哲, 等. 钙钛矿稀土镍酸盐SmNiO3薄膜的研究进展[J]. 表面技术, 2020, 49(4): 151-160.

    Jia Linan, Fu Yibo, Zhao Zhe, et al. Research progress of perovskite rare earth nickelate SmNiO3 thin films[J]. Surface Technology, 2020, 49(4): 151-160.
    [35] 陈凯, 景建恩, 赵庆献, 等. 海底可控源电磁接收机及其水合物勘查应用[J]. 地球物理学报, 2017, 60(11): 4262-4272. doi: 10.6038/cjg20171114

    Chen Kai, Jing Jianen, Zhao Qingxian, et al. Submarine controlled source electromagnetic receiver and its application in hydrate exploration[J]. Chinese Journal of Geophysics, 2017, 60(11): 4262-4272. doi: 10.6038/cjg20171114
    [36] Wang Z, Deng M, Chen K, et al. Development and evaluation of an ultralow-noise sensor system for marine electric field measurements[J]. Sensors & Actuators a Physical, 2014(213): 70-78.
    [37] Drung D, Storm J. Ultralow-noise chopper amplifier with low input charge injection[J]. IEEE Transactions on Instrumentation & Measurement, 2011, 60(7): 2347-2352.
    [38] Constable S C. Review paper: Instrumentation for marine magnetotelluric and controlled source electromagnetic sounding[J]. Geophysical Prospecting, 2013, 61(1): 505-532.
    [39] EMGS. Company profile[EB/OL]. [2023-07-02]. http://www.emgs.com/content/588/Company-profile, 2016.
    [40] Geir B H, Jensen H R, Kurrasch A, et al. Low noise Ag/AgCl electric field sensor system for marine CSEM and MT applications[EB/OL]. [2023-07-02]. https://xueshu.baidu.com/usercenter/paper/show?paperid=3318ab7ab304c6abf08db112cefdce17&site=xueshu_se.
    [41] QUASAR. QMax EM3[EB/OL].(2012-01-01)[2023-5-08]. https://www.quasarfs.com/success-stories/qmax-em3/.
    [42] Chen K, Deng M, Luo X, et al. A micro ocean-bottom E-field receiver geophysics[J]. Geophysics: Journal of the Society of Exploration Geophysicists, 2017, 82(5): 233-241
    [43] 罗贤虎, 邱宁, 邓明, 等. MicrOBEM: 小型海底电磁接收机[J]. 物探与化探, 2022, 46(3): 544-549.

    Luo Xianhu, Qiu Ning, Deng Ming, et al. MicrOBEM: A micro-ocean-bottom electromagnetic receiver[J]. Geophysical and Geochemical Exploration, 2022, 46(3): 544-549.
    [44] Constable S, Kannberg P K, Weitemeyer K. Vulcan: A deep-towed CSEM receiver[J]. Geochemistry Geophysics Geosystems, 2016, 17(3): 1042-1064. doi: 10.1002/2015GC006174
    [45] Chen Kai, Deng M, Yu Ping, et al. A near-seafloor-towed CSEM receiver for deeper target prospecting[J]. Terr. Atmos. Ocean. Sci., 2020, 31(5): 565-577. doi: 10.3319/TAO.2020.08.03.01
    [46] 王猛, 邓明, 余平, 等. 深水拖曳式大功率时频发射与多链缆多分量电磁探测系统[J]. 地球物理学报, 2022, 65(9): 3664-3673.

    Wang Meng, Deng Ming, Yu Ping, et al. Deepwater towed high-power time-frequency transmission and multi-cable multi-component electromagnetic detection system[J]. Chinese Journal of Geophysics, 2022, 65(9): 3664-3673.
    [47] 程锦房, 喻鹏, 张伽伟, 等. 水下电场探测定位技术应用研究现状[J]. 海军工程大学学报, 2022, 34(4): 68-74.

    Cheng Jinfang, Yu Peng, Zhang Jiawei, et al. Application research status of underwater electric field detection and positioning technology[J]. Journal of Naval University of Engineering, 2022, 34(4): 68-74.
    [48] 陈新刚, 喻鹏, 刘大钢. 基于自持式剖面浮标的目标电场探测方法研究[J]. 中国造船, 2020, 61(A1): 31-39.

    Chen Xingang, Yu Peng, Liu Dagang. Research on target electric field detection method based on self-sus taining profile buoy[J]. Shipbuilding of China, 2020, 61(A1): 31-39.
    [49] QUASAR. E-field Sensing Buoy[EB/OL].(2012-01-01)[2023-5-08]. https://www.quasarfs.com/solutions-and-services/underwater-em-sensing/.
    [50] Yu P, Zhang J W, Cheng J F, et al. Analysis of the natural electric field at different sea depths[J]. J Instrum, 2021, 16(1): 1-7.
    [51] 吕俊军, 陈凯, 苏建业, 等. 海洋中的电磁场及其应用[M]. 上海: 上海科学技术出版社, 2020.
    [52] Qualls S R, Osborn J M, Anderson M J, et al. Underwater electric potential measurements using AUVs[C]//Oceans 2015-MTS/IEEE. Washington, USA: MTS/IEEE, 2015.
    [53] Constable S, Kowalczyk P, Bloomer S. Measuring marine self-potential using an autonomous underwater vehicle[J]. Geophysical Journal International, 2018, 215(1): 49-60. doi: 10.1093/gji/ggy263
    [54] Zhu Z, Tao C, Shen J, et al. Self-potential tomography of a deep-sea polymetallic sulfide deposit on southwest indian ridge[J]. Journal of Geophysical Research-Solid Earth, 2020, 125(11): e2020JB019738. doi: 10.1029/2020JB019738
    [55] Zhu Z, Shen J, Tao C, et al. Autonomous-underwater-vehicle-based marine multicomponent self-potential method: Observation scheme and navigational correction[J]. Geoscientific Instrumentation, Methods and Data Systems, 2021(10): 35-43.
    [56] 蒋礼. 长周期大地电磁多站叠加技术[D]. 武汉: 中国地质大学(武汉), 2012.
    [57] 汤井田, 李晋, 肖晓, 等. 数学形态滤波与大地电磁噪声压制[J]. 地球物理学报, 2012, 55(5): 1784-1793.

    Tang Jingtian, Li Jin, Xiao Xiao, et al. Mathematical morphological filtering and magnetotelluric noise suppression[J]. Chinese Journal of Geophysics, 2012, 55(5): 1784-1793.
    [58] 汤井田, 刘子杰, 刘峰屹, 等. 音频大地电磁法强干扰压制试验研究[J]. 地球物理学报, 2015, 58(12): 4636-4647.

    Tang Jingtian, Liu Zijie, Liu Fengyi, et al. Experimental study on strong interference suppression of audio magnetotelluric method[J]. Chinese Journal of Geophysics, 2015, 58(12): 4636-4647.
    [59] 王辉, 魏文博, 金胜, 等. 基于同步大地电磁时间序列依赖关系的噪声处理[J]. 地球物理学报, 2014, 57(2): 531-545.

    Wang Hui, Wei Wenbo, Jin Sheng, et al. Noise processing based on the dependence of synchronous magnetotelluric time series[J]. Chinese Journal of Geophysics, 2014, 57(2): 531-545.
    [60] 徐义贤, 王家映. 基于连续小波变换的大地电磁信号谱估计方法[J]. 地球物理学报, 2000, 43(5): 677-683.

    Xu Yixian, Wang Jiaying. Magnetotelluric signal spectrum estimation method based on continuous wavelet transform[J]. Chinese Journal of Geophysics, 2000, 43(5): 677-683.
    [61] Cai J. A combinatorial filtering method for magnetotelluric time-series based on Hilbert-Huang transform[J]. Exploration Geophysics, 2012, 45(2): 63-73.
    [62] 景建恩, 魏文博, 陈海燕, 等. 基于广义S变换的大地电磁测深数据处理[J]. 地球物理学报, 2012, 55(12): 4015-4022. doi: 10.6038/j.issn.0001-5733.2012.12.013

    Jing Jianen, Wei Wenbo, Chen Haiyan, et al. Magnetotelluric sounding data processing based on generalized S transform[J]. Chinese Journal of Geophysics, 2012, 55(12): 4015-4022. doi: 10.6038/j.issn.0001-5733.2012.12.013
    [63] Gamble T D, Goubau W M, Clarke J. Magnetotellurics with a remote magnetic reference[J]. Geophysics, 1979, 44(1): 53-68. doi: 10.1190/1.1440923
    [64] Egbert G D. Robust multiple-station magnetotelluric data processing[J]. Geophysical Journal International, 1997, 130(2): 475-496. doi: 10.1111/j.1365-246X.1997.tb05663.x
    [65] Egbert G D, John R. Robust estimation of geomagnetic transfer functions[J]. Geophysical Journal International, 1986, 87(1): 173-194. doi: 10.1111/j.1365-246X.1986.tb04552.x
    [66] Chen J, Heincke B, Jegen M, et al. Using empirical mode decomposition to process marine magnetotelluric data[J]. Geophysical Journal International, 2012, 190(1): 293-309. doi: 10.1111/j.1365-246X.2012.05470.x
    [67] Fan Y, Snieder R, Slob E, et al. Increasing the sensitivity of controlled-source electromagnetics with synthetic aperture[J]. Geophysics, 2012, 77(2): 135-145. doi: 10.1190/geo2011-0102.1
    [68] Engelmark F, McKay A, Mattsson J. Application of synthetic aperture concepts to towed streamer EM data[J]. ASEG Extended Abstracts, 2013(1): 1-4.
    [69] Yoon D, Zhdanov M S. Optimal synthetic aperture method for marine controlled-source EM surveys[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 12(2): 414-418.
    [70] Myer D, Constable S, Key K. Broad-band waveforms and robust processing for marine CSEM surveys[J]. Geophysical Journal International, 2011, 184(2): 689-698. doi: 10.1111/j.1365-246X.2010.04887.x
    [71] 于彩霞. 海洋可控源电磁法数据处理研究[D]. 北京: 中国地质大学(北京), 2010.
    [72] Zhang J, Wu X, Qi Y, et al. Research on 3D marine electromagnetic interferometry with synthetic sources for suppressing the airwave interference[J]. Applied Geophysics, 2013, 10(4): 373-383. doi: 10.1007/s11770-013-0403-3
    [73] 朱忠民. 海洋电磁响应有效信号增强与干扰压制方法研究[D]. 北京: 中国石油大学(北京), 2016.
    [74] 李予国, 段双敏. 海洋可控源电磁数据预处理方法研究[J]. 中国海洋大学学报(自然科学版), 2014(44): 106-112.

    Li Yüguo, Duan Shuangmin. Research on marine controlled source electromagnetic data preprocessing method[J]. Periodical of Ocean University of China, 2014(44): 106-112.
    [75] 周文强. 海洋可控源电磁勘探中MT噪声降噪方法及测试平台研究[D]. 青岛: 中国石油大学(华东), 2018.
    [76] 李肃义, 蒋善庆, 王跃洋, 等. 海洋可控源电磁数据中海水扰动噪声的小波校正方法研究[J]. 石油物探, 2016, 55(5): 657-663.

    Li Suyi, Jiang Shanqing, Wang Yueyang, et al. Research on wavelet correction method of seawater disturbance noise in marine controlled source electromagnetic data[J]. Geophysical Prospecting for Petroleum, 2016, 55(5): 657-663.
    [77] 林昕, 魏文博, 景建恩, 等. 提高海洋可控源电磁法信噪比的方法研究[J]. 地球物理学进展, 2009, 24(3): 1047-1050.

    Lin Xin, Wei Wenbo, Jing Jianen, et al. Research on the method of improving the signal-to-noise ratio of marine controlled source electromagnetic method[J]. Progress in Geophysics, 2009, 24(3): 1047-1050.
    [78] 李泽林. 基于自适应滤波的海洋可控源数据噪声处理方法研究[D]. 武汉: 中国地质大学(武汉), 2017.
    [79] Kim Y, Jo G, Jung H K. Real-time detection of electric field signal of a moving object using adjustable frequency bands and statistical discriminant for underwater defense[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022(60): 1-8.
    [80] Cho S H, Jung H K, Lee H, et al. Real-time underwater object detection based on DC resistivity method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016(54): 6833-6842.
    [81] 魏文博. 南黄海海底大地电磁测深试验研究[J]. 地球物理学报, 2009, 52(3): 740-749.

    Wei Wenbo. Experimental study on seafloor magnetotelluric sounding in the South Yellow Sea[J]. Chinese Journal of Geophysics, 2009, 52(3): 740-749.
    [82] Constable S C, Srnka L J. An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration[J]. Geophysics, 2007, 72(2): 3-WA12. doi: 10.1190/1.2432483
    [83] Liu C G, Zhao Q X, Luo X H, et al. High-resolution resistivity imaging of a transversely uneven gas hydrate reservoir: A case in the qiongdongnan basin, South China Sea[J]. Remote Sensing, 2023, 15: 2000. doi: 10.3390/rs15082000
    [84] Bhuiyan A, Vesterås E, Mckay A. Frontier exploration using a towed streamer EM system-barents sea examples[C]//2015 SEG Annual Meeting. New Orleans, Louisiana: 2015 SEG Annual Meeting, 2015: 884-888.
    [85] Naif S, Key K, Constable S, et al. Melt-rich channel observed at the lithosphere-asthenosphere boundary[J]. Nature, 2013, 495(7441): 356-359. doi: 10.1038/nature11939
    [86] Johansen S E, Panzner M, Mitte R, et al. Deep electrical imaging of the ultraslow-spreading Mohns ridge[J]. Nature, 2019, 567(7748): 379. doi: 10.1038/s41586-019-1010-0
    [87] Zhang L, Baba K, Liang P, et al. The 2011 tohoku tsunami observed by an array of ocean bottom electromagnetometers[J]. Geophysical Research Letters, 2014, 41(14): 4937-4944. doi: 10.1002/2014GL060850
  • 加载中
图(24) / 表(3)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  139
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-31
  • 修回日期:  2023-07-10
  • 录用日期:  2023-08-04
  • 网络出版日期:  2023-08-14

目录

    /

    返回文章
    返回
    服务号
    订阅号