• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋生物水下原位监测技术及其在偏振维度的信息拓展

柯剑寒 岳钧百 程雪岷 毕洪生

柯剑寒, 岳钧百, 程雪岷, 等. 海洋生物水下原位监测技术及其在偏振维度的信息拓展[J]. 水下无人系统学报, 2023, 31(4): 614-623 doi: 10.11993/j.issn.2096-3920.2023-0067
引用本文: 柯剑寒, 岳钧百, 程雪岷, 等. 海洋生物水下原位监测技术及其在偏振维度的信息拓展[J]. 水下无人系统学报, 2023, 31(4): 614-623 doi: 10.11993/j.issn.2096-3920.2023-0067
KE Jianhan, YUE Junbai, CHENG Xuemin, BI Hongsheng. Underwater In-Situ Monitoring Technology for Marine Organisms and Its Information Expansion in Polarization Dimensionn[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 614-623. doi: 10.11993/j.issn.2096-3920.2023-0067
Citation: KE Jianhan, YUE Junbai, CHENG Xuemin, BI Hongsheng. Underwater In-Situ Monitoring Technology for Marine Organisms and Its Information Expansion in Polarization Dimensionn[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 614-623. doi: 10.11993/j.issn.2096-3920.2023-0067

海洋生物水下原位监测技术及其在偏振维度的信息拓展

doi: 10.11993/j.issn.2096-3920.2023-0067
基金项目: 国家重点研发计划项目资助(2017YFC1403600)
详细信息
    作者简介:

    柯剑寒(2000-), 男, 在读硕士, 主要研究方向为光学系统研究与设计

    通讯作者:

    程雪岷(1976-), 女, 博士, 副研究员, 主要研究方向为光学系统设计

  • 中图分类号: U674.7; TJ630.34

Underwater In-Situ Monitoring Technology for Marine Organisms and Its Information Expansion in Polarization Dimensionn

  • 摘要: 监测监管海洋环境并合理开发利用海洋自然资源需要先进的观测手段。海洋光学技术作为一种具有高时空分辨、高通量数据采集能力的成熟化信息感知方式, 在海洋科学研究中具有重要的作用。面向偏振光学的研究扩充了传统光学成像及测量技术的信息模态, 目前已在海洋观测及其以生态学为代表主题的衍生领域展开了大量的研究应用。文中基于海洋环境观测和海洋生物观测2个方面重点回顾了偏振光学技术在其中的研究进展, 一方面, 偏振光学辅助了复杂物理过程和环境理化性质的深入解析; 另一方面, 偏振光学在生物观测领域实现了成像维度拓展、特异性目标检测和生物理化特性感知等增量功能。同时对偏振光学成像及测量方法的模型进行了系统介绍, 并结合研究团队在水下原位生物监测领域开展的系列工作, 展望了引入偏振光学实现新一代实时在线监测系统的应用前景。

     

  • 图  1  PlanktonScope拍摄的尖笔帽螺图像

    Figure  1.  Images of creseis acicula captured by PlanktonScope

    图  2  偏振测量和成像系统基本框图

    Figure  2.  Illustration of polarization measurement and imaging

    图  3  偏振光照明成像(左)与交叉偏振成像(右)效果对比[60]

    Figure  3.  IImaging comparison of polarized light illumination (left) and cross-polarized illumination (right)[60]

    图  4  塑料目标和栉水母的原位偏振图像[62]

    Figure  4.  In-situ polarization images of plastic bags and Ctenophora[62]

    图  5  传统荧光测量系统(左)和荧光偏振测量系统(右)示意图

    Figure  5.  Illustration of traditional fluorescence imaging system (left) and fluorescence polarization imaging system (right)

    图  6  具有不同粒径和折射率的微粒归一化偏振光散射信号

    Figure  6.  Normalized polarized light scattering signals of microspheres with different diameters and refractive indices

    图  7  Chattonella marina样品在数日内的散射光强和偏振信号对比图 [73]

    Figure  7.  Comparison of scattered light intensity and polarization signal of Chattonella marina sample over several days [73]

  • [1] Wang L, Fan S, Liu Y, et al. A review of methods for ship detection with electro-optical images in marine environments[J]. Journal of Marine Science and Engineering, 2021, 9(12): 1408. doi: 10.3390/jmse9121408
    [2] 尹路, 李延斌, 马金钢. 海洋观测技术现状综述[J]. 舰船电子工程, 2013, 33(11): 4-7. doi: 10.3969/j.issn.1627-9730.2013.11.002

    Yin Lu, Li Yanbin, Ma Jingang. Present status of marine observation technology[J]. Ship Electronic Engineering, 2013, 33(11): 4-7. doi: 10.3969/j.issn.1627-9730.2013.11.002
    [3] Yang J, Gong P, Fu R, et al. The role of satellite remote sensing in climate change studies[J]. Nature Climate Change, 2013, 3(10): 875-883. doi: 10.1038/nclimate1908
    [4] Mahrad B E, Newton A, Icely J D, et al. Contribution of remote sensing technologies to a holistic coastal and marine environmental management framework: A review[J]. Remote Sensing, 2020, 12(14): 2313. doi: 10.3390/rs12142313
    [5] Shen L, Xu H, Guo X. Satellite remote sensing of harmful algal blooms(HABs) and a potential synthesized framework[J]. Sensors, 2012, 12(6): 7778-7803. doi: 10.3390/s120607778
    [6] Shahbazi M, Théau J, Ménard P. Recent applications of unmanned aerial imagery in natural resource management[J]. Mapping Sciences & Remote Sensing, 2014, 51(4): 339-365.
    [7] Yang Z, Yu X, Dedman S, et al. UAV remote sensing applications in marine monitoring: Knowledge visualization and review[J]. Science of the Total Environment, 2022, 838: 155939. doi: 10.1016/j.scitotenv.2022.155939
    [8] Jing W, Liu C, Li T, et al. Path planning and navigation of oceanic autonomous sailboats and vessels: A survey[J]. Journal of Ocean University of China, 2020, 19: 609-621. doi: 10.1007/s11802-020-4144-7
    [9] 杨跃忠, 曹文熙, 孙兆华, 等. 海洋高光谱辐射实时观测系统的研制[J]. 光学学报, 2009, 29(1): 102-107. doi: 10.3788/AOS20092901.0102

    Yang Yuezhong, Cao Wenxi, Sun Zhaohua, et al. Development of real-time hyperspectral radiation sea-observation system[J]. Acta Optica Sinica, 2009, 29(1): 102-107. doi: 10.3788/AOS20092901.0102
    [10] Voss K J, Johnson C B, Yarbrough M A, et al. An overview of the marine optical buoy (MOBY): Past, present and future[C]//Proceedings of the D-240 FRM4SOC-PROC1 Proceedings of WKP-1(PROC-1) Fiducial Reference Measurements for Satellite Ocean Colour (FRM4SOC). Tartu, ESA: Estonia, 2017: 8-13.
    [11] Zhang D, Pan G, Shi Y, et al. Investigation of the resistance characteristics of a multi-AUV system[J]. Applied Ocean Research, 2019, 89: 59-70. doi: 10.1016/j.apor.2019.05.007
    [12] Tian W, Song B, Ding H. Numerical research on the influence of surface waves on the hydrodynamic performance of an AUV[J]. Ocean Engineering, 2019, 183: 40-56. doi: 10.1016/j.oceaneng.2019.04.007
    [13] Su R, Zhang D, Li C, et al. Localization and data collection in AUV-aided underwater sensor networks: Challenges and opportunities[J]. IEEE Network, 2019, 33(6): 86-93. doi: 10.1109/MNET.2019.1800425
    [14] Khan J U, Cho H S. A distributed data-gathering protocol using AUV in underwater sensor networks[J]. Sensors, 2015, 15(8): 19331-19350. doi: 10.3390/s150819331
    [15] Hoteit I, Abualnaja Y, Afzal S, et al. Towards an end-to-end analysis and prediction system for weather, climate, and Marine applications in the red sea[J]. Bulletin of the American Meteorological Society, 2021, 102(1): 99-122. doi: 10.1175/BAMS-D-19-0005.1
    [16] Balaram V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 2019, 10(4): 1285-1303. doi: 10.1016/j.gsf.2018.12.005
    [17] Lombard F, Boss E, Waite A M, et al. Globally consistent quantitative observations of planktonic ecosystems[J]. Frontiers in Marine Science, 2019, 6: 196. doi: 10.3389/fmars.2019.00196
    [18] Dutkiewicz S, Hickman A E, Jahn O, et al. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model[J]. Biogeosciences, 2015, 12(14): 4447-4481. doi: 10.5194/bg-12-4447-2015
    [19] Bi H, Song J, Zhao J, et al. Temporal characteristics of plankton indicators in coastal waters: High-frequency data from PlanktonScope[J]. Journal of Sea Research, 2022, 189: 102283. doi: 10.1016/j.seares.2022.102283
    [20] Bi H, Cheng Y, Cheng X, et al. Taming the data deluge: a novel end-to-end deep learning framework for classifying marine biological and environmental images[J/OL]. bioRxiv, (2022-10-20)[2023-05-25]. https://www.biorxiv.org/content/10.1101/2022.10.20.509848v1.abstract.
    [21] 刘岱, 应轲臻, 蔡中华, 等. 大亚湾西南海域尖笔帽螺 2020 年 7 月暴发期内的分布特征[J]. 海洋与湖沼, 2021, 52(6): 1438-1447.

    Liu Dai, Ying Kezhen, Cai Zhonghua, et al. Outburst of creseis acicula in southwest daya bay in July 2020[J]. Oceanologia et Limnologia Sinica, 2021, 52(6): 1438-1447.
    [22] Song J T, Bi H S, Cai Z H, et al. Early warning of noctiluca scintillans blooms using in-situ plankton imaging system: An example from Dapeng Bay, PR China[J]. Ecological Indicators, 2020, 112: 10612.
    [23] 李淑军, 姜会林, 朱京平, 等. 偏振成像探测技术发展现状及关键技术[J]. 中国光学, 2013, 6(6): 803-809.

    Li Shujun, Jiang Huilin, Zhu Jingping, et al. Development status and key technologies of polarization imaging detection[J]. Chinese Optics, 2013, 6(6): 803-809.
    [24] 何宏辉, 曾楠, 廖然, 等. 偏振光成像技术用于肿瘤病变检测的研究进展[J]. 生物化学与生物物理进展, 2015, 42(5): 419-433.

    He Honghui, Zeng Nan, Liao Ran, et al. Progresses of polarization imaging techniques and their applications in cancer detections[J]. Progress in Biochemistry and Biophysics, 2015, 42(5): 419-433.
    [25] Schmitt J M, Gandjbakhche A H, Bonner R F. Use of polarized light to discriminate short-path photons in a multiply scattering medium[J]. Applied optics, 1992, 31(30): 6535-6546. doi: 10.1364/AO.31.006535
    [26] Schechner Y Y, Karpel N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE Journal of Oceanic Engineering, 2005, 30(3): 570-587. doi: 10.1109/JOE.2005.850871
    [27] Li D, He H, Zeng N, et al. Polarization imaging and scattering model of cancerous liver tissues[J]. Journal of Innovative Optical Health Sciences, 2013, 6(3): 1350025. doi: 10.1142/S1793545813500259
    [28] McNichols R J, Cote G L. Optical glucose sensing in biological fluids: An overview[J]. Journal of Biomedical Optics, 2000, 5(1): 5-16. doi: 10.1117/1.429962
    [29] Wang F, Yin C, Wang Y. Research of polarization imaging detection method for water surface target in foggy weather[C]//International Symposium on Photoelectronic Detection and Imaging 2013: Infrared Imaging and Applications. Beijing, China: SPIE, 2013.
    [30] Wang P, Li D, Wang X, et al. Analyzing polarization transmission characteristics in foggy environments based on the indices of polarimetric purity[J]. IEEE Access, 2020, 8: 227703-227709. doi: 10.1109/ACCESS.2020.3045993
    [31] Yang Y, Wang L, Huang M, et al. Polarization imaging based bruise detection of nectarine by using ResNet-18 and ghost bottleneck[J]. Postharvest Biology and Technology, 2022, 189: 111916. doi: 10.1016/j.postharvbio.2022.111916
    [32] Kim S C, Kim E S. Performance analysis of stereoscopic three-dimensional projection display systems[J]. 3D Research, 2010, 1(1): 1-16. doi: 10.1007/3DRes.01(2010)1
    [33] Huang B, Liu T, Hu H, et al. Underwater image recovery considering polarization effects of objects[J]. Optics Express, 2016, 24(9): 9826-9838. doi: 10.1364/OE.24.009826
    [34] Cartron L, Josef N, Lerner A, et al. Polarization vision can improve object detection in turbid waters by cuttlefish[J]. Journal of Experimental Marine Biology and Ecology, 2013, 447: 80-85. doi: 10.1016/j.jembe.2013.02.013
    [35] Fu Q, Si L, Liu J, et al. Design and experimental study of a polarization imaging optical system for oil spills on sea surfaces[J]. Applied Optics, 2022, 61(21): 6330-6338. doi: 10.1364/AO.456305
    [36] Shamanaev V S. Detection of schools of marine fish using polarization laser sensing[J]. Atmospheric and Oceanic Optics, 2018, 31: 358-364. doi: 10.1134/S1024856018040103
    [37] Gil J J, Ossikovski R. Polarized light and the Mueller matrix approach[M]. Boca Raton: CRC press, 2022.
    [38] Yeh P. Extended Jones matrix method[J]. JOSA, 1982, 72(4): 507-513. doi: 10.1364/JOSA.72.000507
    [39] Pezzaniti J L, Chipman R A. Mueller matrix imaging polarimetry[J]. Optical Engineering, 1995, 34(6): 1558-1568. doi: 10.1117/12.206161
    [40] Jacques S L, Ramella-Roman J C, Lee K. Imaging skin pathology with polarized light[J]. Journal of Biomedical Optics, 2002, 7(3): 329-340. doi: 10.1117/1.1484498
    [41] Ghosh N, Vitkin I A. Tissue polarimetry: concepts, challenges, applications, and outlook[J]. Journal of Biomedical Optics, 2011, 16(11): 110801-110830. doi: 10.1117/1.3652896
    [42] Chung J R, Delaughter A H, Baba J S, et al. Interpretation of Mueller matrix images based on polar decomposition and statistical discriminators to distinguish skin cancer[C]//Laser-Tissue Interaction XIV. San Jose, United States: SPIE, 2003.
    [43] Morio J, Goudail F. Influence of the order of diattenuator, retarder, and polarizer in polar decomposition of Mueller matrices[J]. Optics Letters, 2004, 29(19): 2234-2236. doi: 10.1364/OL.29.002234
    [44] He H, Zeng N, Du E, et al. A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien[J]. Photonics & Lasers in Medicine, 2013, 2(2): 129-137.
    [45] Liu Y, Kim Y L, Li X, et al. Investigation of depth selectivity of polarization gating for tissue characterization[J]. Optics Express, 2005, 13(2): 601-611. doi: 10.1364/OPEX.13.000601
    [46] Tyo J S, Rowe M P, Pugh E N, et al. Target detection in optically scattering media by polarization-difference imaging[J]. Applied Optics, 1996, 35(11): 1855-1870. doi: 10.1364/AO.35.001855
    [47] 李轩, 刘飞, 邵晓鹏. 偏振三维成像技术的原理和研究进展[J]. 红外与毫米波学报, 2021, 40(2): 248-262.

    Li Xuan, Liu Fei, Shao Xiaopeng. Research progress on polarization 3D imaging technology[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 248-262.
    [48] Meng J, Cao T, Peng J, et al. Polarized image near-natural color fusion algorithm for target detection[J]. Applied Optics, 2022, 61(6): 1323-1330. doi: 10.1364/AO.446207
    [49] Zappa C J, Banner M L, Schultz H, et al. Retrieval of short ocean wave slope using polarimetric imaging[J]. Measurement Science and Technology, 2008, 19(5): 055503. doi: 10.1088/0957-0233/19/5/055503
    [50] Tonizzo A, Zhou J, Gilerson A, et al. Polarized light in coastal waters: Hyperspectral and multiangular analysis[J]. Optics Express, 2009, 17(7): 5666-5683. doi: 10.1364/OE.17.005666
    [51] You Y, Kattawar G W, Voss K J, et al. Polarized light field under dynamic ocean surfaces: Numerical modeling compared with measurements[J]. Journal of Geophysical Research: Oceans, 2012, 117(C7): 1-13.
    [52] Foster R, Gilerson A. Polarized transfer functions of the ocean surface for above-surface determination of the vector submarine light field[J]. Applied Optics, 2016, 55(33): 9476-9494. doi: 10.1364/AO.55.009476
    [53] Li H, Perrie W. Detection of oil spills with the second stokes parameter of the hybird polarimetric SAR[C]//2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS. Melbourne, Australia: IEEE, 2013: 3526-3529.
    [54] Guan L, Li S, Zhai L, et al. Study on skylight polarization patterns over the ocean for polarized light navigation application[J]. Applied Optics, 2018, 57(21): 6243-6251. doi: 10.1364/AO.57.006243
    [55] Xue F, Jin W, Qiu S, et al. Airborne optical polarization imaging for observation of submarine Kelvin wakes on the sea surface: Imaging chain and simulation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178: 136-154. doi: 10.1016/j.isprsjprs.2021.06.001
    [56] Beardsley G F. Mueller scattering matrix of sea water[J]. JOSA, 1968, 58(1): 52-57. doi: 10.1364/JOSA.58.000052
    [57] Kadyshevich Y A, Lyubovtseva Y S, Rozenberg G V. Light-scattering matrices of pacific and atlantic ocean waters[J]. Izvestiya Atmospheric and Oceanic Physics, 1976, 12: 106.
    [58] Voss K J, Fry E S. Measurement of the mueller matrix for ocean water[J]. Applied optics, 1984, 23(23): 4427-4439. doi: 10.1364/AO.23.004427
    [59] Shashar N, Sabbah S, Cronin T W. Transmission of linearly polarized light in seawater: Implications for polarization signaling[J]. Journal of Experimental Biology, 2004, 207(20): 3619-3628. doi: 10.1242/jeb.01187
    [60] Johnson L E. Enhanced early detection and enumeration of zebra mussel(Dreissena spp.) veligers using cross-polarized light microscopy[J]. Hydrobiologia, 1995, 312: 139-146. doi: 10.1007/BF00020769
    [61] Otani Y, Endo N, Hagen N, et al. Imaging microplastics consumed by water organisms using a full-Stokes polarization camera[C]//Biomedical Imaging and Sensing Conference 2021. Japan: SPIE, 2021.
    [62] Kagel S M, Garcia M, Cummings M E, et al. Comparison of the polarization contrast of gelatinous zooplankton and a transparent single-use plastic bag—Implications for marine animals[J]. Marine Pollution Bulletin, 2021, 168: 112438. doi: 10.1016/j.marpolbul.2021.112438
    [63] Collard F, Gilbert B, Compère P, et al. Microplastics in livers of European anchovies(Engraulis encrasicolus, L.)[J]. Environmental Pollution, 2017, 229: 1000-1005. doi: 10.1016/j.envpol.2017.07.089
    [64] Fang M, Dong D, Zeng C, et al. Polarization-sensitive optical projection tomography for muscle fiber imaging[J]. Scientific Reports, 2016, 6(1): 19241. doi: 10.1038/srep19241
    [65] 赵晨, 张亮, 倪原. 荧光偏振技术在生命科学中的研究进展[J]. 现代生物医学进展, 2010, 10(16): 3154-3156.

    Zhao Chen, Zhang Liang, Ni yuan. Development of fluorescence polarization in life sciences[J]. Progress in Modern Biomedicine, 2010, 10(16): 3154-3156.
    [66] De Boer J F, Hitzenberger C K, Yasuno Y. Polarization sensitive optical coherence tomography——A review[J]. Biomedical Optics Express, 2017, 8(3): 1838-1873. doi: 10.1364/BOE.8.001838
    [67] Yaroslavsky A N, Feng X, Muzikansky A, et al. Fluorescence polarization of methylene blue as a quantitative marker of breast cancer at the cellular level[J]. Scientific Reports, 2019, 9(1): 940. doi: 10.1038/s41598-018-38265-0
    [68] Otero P, Alfonso A, Alfonso C, et al. First direct fluorescence polarization assay for the detection and quantification of spirolides in mussel samples[J]. Analytica Chimica Acta, 2011, 701(2): 200-208. doi: 10.1016/j.aca.2011.05.034
    [69] Quinby-Hunt M S, Hunt A J, Lofftus K, et al. Polarized-light scattering studies of marine chlorella[J]. Limnology and Oceanography, 1989, 34(8): 1587-1600. doi: 10.4319/lo.1989.34.8.1587
    [70] Wang Y, Liao R, Dai J, et al. Differentiation of suspended particles by polarized light scattering at 120[J]. Optics Express, 2018, 26(17): 22419-22431. doi: 10.1364/OE.26.022419
    [71] Svensen Ø, Stamnes J J, Kildemo M, et al. Mueller matrix measurements of algae with different shape and size distributions[J]. Applied Optics, 2011, 50(26): 5149-5157. doi: 10.1364/AO.50.005149
    [72] Li J, Liu H, Liao R, et al. Recognition of microplastics suspended in seawater via refractive index by Mueller matrix polarimetry[J]. Marine Pollution Bulletin, 2023, 188: 114706. doi: 10.1016/j.marpolbul.2023.114706
    [73] Wang Y, Dai J, Liao R, et al. Characterization of physiological states of the suspended marine microalgae using polarized light scattering[J]. Applied Optics, 2020, 59(5): 1307-1312. doi: 10.1364/AO.377332
    [74] Noorduin W L, Bode A A C, Van der Meijden M, et al. Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light[J]. Nature Chemistry, 2009, 1(9): 729-732. doi: 10.1038/nchem.416
    [75] Gurjar R S, Backman V, Perelman L T, et al. Imaging human epithelial properties with polarized light-scattering spectroscopy[J]. Nature Medicine, 2001, 7: 1245-1248. doi: 10.1038/nm1101-1245
    [76] Liu B, Yao Y, Liu R, et al. Mueller polarimetric imaging for characterizing the collagen microstructures of breast cancer tissues in different genotypes[J]. Optics Communications, 2019, 433: 60-67. doi: 10.1016/j.optcom.2018.09.037
  • 加载中
图(7)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  19
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-25
  • 修回日期:  2023-06-30
  • 录用日期:  2023-07-05
  • 网络出版日期:  2023-07-10

目录

    /

    返回文章
    返回
    服务号
    订阅号