• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温海水环境船舶典型材料电化学特性研究

周彤 余定峰 郑攀峰 杨帅

周彤, 余定峰, 郑攀峰, 等. 低温海水环境船舶典型材料电化学特性研究[J]. 水下无人系统学报, 2023, 31(4): 552-558 doi: 10.11993/j.issn.2096-3920.2023-0058
引用本文: 周彤, 余定峰, 郑攀峰, 等. 低温海水环境船舶典型材料电化学特性研究[J]. 水下无人系统学报, 2023, 31(4): 552-558 doi: 10.11993/j.issn.2096-3920.2023-0058
ZHOU Tong, YU Dingfeng, ZHENG Panfeng, YANG Shuai. Electrochemical Characteristics of Typical Ship Materials in Low-Temperature Seawater[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 552-558. doi: 10.11993/j.issn.2096-3920.2023-0058
Citation: ZHOU Tong, YU Dingfeng, ZHENG Panfeng, YANG Shuai. Electrochemical Characteristics of Typical Ship Materials in Low-Temperature Seawater[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 552-558. doi: 10.11993/j.issn.2096-3920.2023-0058

低温海水环境船舶典型材料电化学特性研究

doi: 10.11993/j.issn.2096-3920.2023-0058
基金项目: 国防科技基础加强计划技术领域基金资助项目(2022-JCJQ-**-****)
详细信息
    作者简介:

    周彤:周 彤(1991-), 女, 硕士, 工程师, 主要研究方向为舰船电磁场应用及防护

  • 中图分类号: TJ630.34; U674

Electrochemical Characteristics of Typical Ship Materials in Low-Temperature Seawater

  • 摘要: 船舶金属材料在海洋环境中的电化学特性是船舶电场特性产生过程中的重要影响因素, 长期以来, 国内多聚焦于常温海水环境下的金属材料电化学性能研究, 对低温海水环境下的金属材料电化学特性研究较少。文中针对3种典型的船舶主体材料, 开展了不同温度及盐度影响试验, 对比分析其在低温海水环境下的极化电位、极化曲线及极化电阻, 总体结果表明金属材料的开路电位随海水温度的降低而增大, 自腐蚀电位随着海水温度的降低而正移, 随着海水温度的降低溶解活化程度变低。文中工作可为进一步研究电场特征控制和分析评估提供基础理论参考。

     

  • 图  1  试验件实物图

    Figure  1.  Photograph of test piece

    图  2  测试系统连接示意图

    Figure  2.  Connection diagram of test system

    图  3  不同海水温度下高强钢1#极化曲线(海水盐度0.35%)

    Figure  3.  Polarization curves of high-strength steel 1# at different seawater temperatures(0.35% salinity)

    图  4  不同海水温度下高强钢1#极化曲线(海水盐度2%)

    Figure  4.  Polarization curves of high-strength steel 1# at different seawater temperatures (2% salinity)

    图  5  不同海水温度下高强钢1#极化曲线(海水盐度3.5%)

    Figure  5.  Polarization curves of high-strength steel 1# at different seawater temperatures (3.5% salinity)

    图  6  不同海水温度下高强钢2#极化曲线(海水盐度0.35%)

    Figure  6.  Polarization curves of high-strength steel 2# at different seawater temperatures (0.35% salinity)

    图  7  不同海水温度下高强钢2#极化曲线(海水盐度2%)

    Figure  7.  Polarization curves of high-strength steel 2# at different seawater temperatures (2% salinity)

    图  8  不同海水温度下高强钢2#极化曲线(海水盐度3.5%)

    Figure  8.  Polarization curves of high-strength steel 2# at different seawater temperatures (3.5% salinity)

    图  9  不同海水温度下铜合金极化曲线(海水盐度0.35%)

    Figure  9.  Polarization curves of copper alloy at different seawater temperatures(0.35% salinity)

    图  10  不同海水温度下铜合金极化曲线(海水盐度2%)

    Figure  10.  Polarization curves of copper alloy at different seawater temperatures(2% salinity)

    图  11  不同海水温度下铜合金极化曲线(海水盐度3.5%)

    Figure  11.  Polarization curves of copper alloy at different seawater temperatures(3.5% salinity)

    图  12  温度0 ℃、盐度0.35%海水条件下高强钢1#电流-电位曲线

    Figure  12.  Current-potential curve of high-strength steel 1# in seawater of 0 ℃ and 0.35% salinity

    表  1  环境因素影响试验设计

    Table  1.   Environmental factor affecting test design

    序号试验件材料温度/℃盐度/%
    1高强钢1#00.35
    22.00
    33.50
    480.35
    52.00
    63.50
    7250.35
    82.00
    93.50
    10高强钢2#00.35
    112.00
    123.50
    1380.35
    142.00
    153.50
    16250.35
    172.00
    183.50
    19铜合金00.35
    202.00
    213.50
    2280.35
    232.00
    243.50
    25250.35
    262.00
    273.50
    下载: 导出CSV

    表  2  不同环境下高强钢1#开路电位

    Table  2.   Open circuit potential of high-strength steel 1# under different environments

    序号盐度/%温度/℃开路电位/V
    10.350−0.557 621 6
    28−0.577 322 2
    325−0.632 556 3
    42.000−0.540 334 3
    58−0.562 500 1
    625−0.587 693 3
    73.500−0.550 457 5
    88−0.563 194 1
    925−0.628 237 7
    下载: 导出CSV

    表  3  不同环境下高强钢2#开路电位

    Table  3.   Open circuit potential of high-strength steel 2# under different environments

    序号盐度/%温度/℃开路电位/V
    10.350−0.555 202 7
    28−0.564 018 2
    325−0.597 781 4
    42.000−0.525 225 0
    58−0.533 390 5
    625−0.559 813 5
    73.500−0.543 708 0
    88−0.550 279 3
    925−0.597 205 3
    下载: 导出CSV

    表  4  不同环境下铜合金开路电位

    Table  4.   Open circuit potential of copper alloy under different environments

    序号盐度/%温度/℃开路电位/V
    10.350−0.195 224 0
    28−0.234 144 3
    325−0.208 928 6
    42.000−0.273 376 7
    58−0.265 310 0
    625−0.281 084 6
    73.500−0.363 952 3
    88−0.309 637 3
    925−0.293 071 4
    下载: 导出CSV

    表  5  不同环境下高强钢1#极化电阻

    Table  5.   Polarization resistance of high-strength steel 1# under different environments

    序号盐度/%温度/℃极化电阻/(Ω/cm2)
    10.35065.100
    2861.425
    32579.074
    42.00017.975
    5822.314
    62522.824
    73.50015.611
    8814.575
    92514.518
    下载: 导出CSV

    表  6  不同环境下高强钢2#极化电阻

    Table  6.   Polarization resistance of high-strength steel 2# under different environments

    序号盐度/%温度/℃极化电阻/(Ω/cm2)
    10.35054.665
    2874.629
    32584.965
    42.00020.903
    5819.827
    62519.032
    73.50012.722
    8814.556
    92518.837
    下载: 导出CSV

    表  7  不同环境下铜合金极化电阻

    Table  7.   Polarization resistance of copper alloy under different environments

    序号盐度/%温度/℃极化电阻/(Ω/cm2)
    10.350101.170
    28154.480
    325124.640
    42.00030.878
    5821.915
    62528.046
    73.50019.860
    8816.229
    92516.390
    下载: 导出CSV

    表  8  不同环境下金属电位差

    Table  8.   Metal potential difference under different environments

    序号金属材质盐度/%温度/℃电位差/V
    1高强钢1#铜合金0.3500.362 40
    280.343 18
    3250.423 63
    42.0000.266 96
    580.297 19
    6250.306 61
    73.5000.186 51
    880.253 56
    9250.335 17
    10高强钢2#铜合金0.3500.359 98
    1180.329 87
    12250.388 85
    132.0000.251 85
    1480.268 08
    15250.278 73
    163.5000.179 76
    1780.24064
    18250.30413
    下载: 导出CSV
  • [1] 孙公毅, 裴建新, 陈家林, 等. 水下极低频电磁信号探测中的海流感应电磁噪声压制[J]. 中国海洋大学学报(自然科学版), 2021, 51(12): 72-80.

    Sun Gongyi, Pei Jianxin, Chen Jianlin, et al. Current induced electromagnetic noise suppression in underwater extremely low frequency electromagnetic signal detection[J]. Periodical of Ocean University of China, 2021, 51(12): 72-80.
    [2] 孙强, 姜润翔, 喻鹏, 等. 船体状态对电流补偿式电场隐身控制参量的影响[J]. 水下无人系统学报, 2020, 28(12): 657-662.

    Sun Qiang, Jiang Runxiang, Yu Peng et al. Effects of hull states on the control parameter of the current compensation electric field stealth[J]. Journal of Unmanned Undersea Systems, 2020, 28(12): 657-662.
    [3] 孙宝全, 颜冰, 姜润翔, 等. 船舶静电场在船舶跟踪定位中的应用[J]. 水下无人系统学报, 2018, 26(1): 57-62.

    Sun Baoquan, Yan Bing, Jiang Runxiang et al. Application of ship static electric field of ship tracking and positioning[J]. Journal of Unmanned Undersea Systems, 2018, 26(1): 57-62.
    [4] 李越, 张伽伟, 程锦房. 基于信号特征的舰船轴频电场检测改进算法[J]. 水下无人系统学报, 2019, 27(4): 398-405.

    Li Yue, Zhang Jiawei, Cheng Jinfang. Improved detection algorithm of ship’s shaft-frequency electric field based on signal features[J]. Journal of Unmanned Undersea Systems, 2019, 27(4): 398-405.
    [5] 卞强, 张民, 柳懿, 等. 一种基于ANSYS 的舰船静电场分析方法[J]. 海军工程大学学报, 2010, 22(6): 65-69. doi: 10.3969/j.issn.1009-3486.2010.06.014

    Bian Qiang, Zhang Min, Liu Yi, et al. An analytic method of ship static electric field[J]. Journal of Naval University of Engineering, 2010, 22(6): 65-69. doi: 10.3969/j.issn.1009-3486.2010.06.014
    [6] 李俊, 包中华, 龚沈光, 等. 优化ICCP 系统的船舶静电场隐身研究[J]. 海军工程大学学报, 2011, 23(1): 67-72. doi: 10.3969/j.issn.1009-3486.2011.01.014

    Li Jun, Bao Zhonghua, Gong Shenguang, et al. Optimization of ICCP systems to minimise static electric signatures for stealth vessels[J]. Journal of Naval University of Engineering, 2011, 23(1): 67-72. doi: 10.3969/j.issn.1009-3486.2011.01.014
    [7] 张华, 王向军, 单潮龙, 等. 基于目标静电场的水中兵器制导方法研究[J]. 电子学报, 2013, 23(3): 470-474. doi: 10.3969/j.issn.0372-2112.2013.03.009

    Zhang Hua, Wang Xiangjun, Shan Chaolong, et al. Research of guidance method based on the electrostatic field of target for underwater weapon[J]. Acta Electronica Sinica, 2013, 23(3): 470-474. doi: 10.3969/j.issn.0372-2112.2013.03.009
    [8] 刘春阳, 王建山, 赵玉龙. 海洋环境对潜艇阴极保护和水下腐蚀静电场的影响[J]. 船电技术, 2022, 42(6): 56-61. doi: 10.3969/j.issn.1003-4862.2022.06.018

    Liu Chunyang, Wang Jianshan, Zhao Yulong. Effects of marine environment on cathodic protection and underwater corrosion electrostatic field of submarine[J]. Marine Electric and Electronic Engineering, 2022, 42(6): 56-61. doi: 10.3969/j.issn.1003-4862.2022.06.018
    [9] 余定峰, 耿攀, 徐正喜, 等. 基于有限元的水下航行器腐蚀静电场特性分析[J]. 船电技术, 2016, 36(6): 23-26. doi: 10.3969/j.issn.1003-4862.2016.06.006

    Yu Dingfeng, Geng Pan, Xu Zhengxi, et al. Analysis on corrosion related static electric field of underwater vehicle by finite element method[J]. Marine Electric and Electronic Engineering, 2016, 36(6): 23-26. doi: 10.3969/j.issn.1003-4862.2016.06.006
    [10] 王泗环, 郁大照, 王腾. 不同环境因素对H62铜合金极化曲线的影响分析[J]. 海军航空工程学院学报, 2019, 34(3): 309-316.

    Wang Sihuan, Yu Dazhao, Wang Teng. Influence analysis of different environmental factors on polarization curve of h62 copper alloy[J]. Journal of Naval Aeronautical and Astronautical University, 2019, 34(3): 309-316.
    [11] 王凤平, 康万利, 敬和民. 腐蚀电化学原理、方法及应用[M]. 北京: 化学工业出版社, 2008.
    [12] 洪刚, 程旭东, 张海兵, 等. Al-Sn-Ga-Bi-Pb-Cd合金电极低温海水电化学性能研究[J]. 电镀与精饰, 2008, 40(4): 33-37.

    Hong Gang, Cheng Xudong, Zhang Haibing et al. Elecrochemical behavior of Al-Sn-Ga-Bi-Pb-Cd alloy in cold seawater[J]. Plating and Finishing, 2008, 40(4): 33-37.
  • 加载中
图(12) / 表(8)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  12
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 修回日期:  2023-07-18
  • 录用日期:  2023-07-19
  • 网络出版日期:  2023-07-25

目录

    /

    返回文章
    返回
    服务号
    订阅号