• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“海燕”号谱系化水下滑翔机技术发展与应用

杨绍琼 李元昊 孙通帅 杨亚楠 杨明 王延辉

杨绍琼, 李元昊, 孙通帅, 等. “海燕”号谱系化水下滑翔机技术发展与应用[J]. 水下无人系统学报, 2023, 31(1): 68-85 doi: 10.11993/j.issn.2096-3920.2023-0011
引用本文: 杨绍琼, 李元昊, 孙通帅, 等. “海燕”号谱系化水下滑翔机技术发展与应用[J]. 水下无人系统学报, 2023, 31(1): 68-85 doi: 10.11993/j.issn.2096-3920.2023-0011
YANG Shao-qiong, LI Yuan-hao, SUN Tong-shuai, YANG Ya-nan, YANG Ming, WANG Yan-hui. Development and Application of Petrel Serialized Underwater Glider Technologies[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 68-85. doi: 10.11993/j.issn.2096-3920.2023-0011
Citation: YANG Shao-qiong, LI Yuan-hao, SUN Tong-shuai, YANG Ya-nan, YANG Ming, WANG Yan-hui. Development and Application of Petrel Serialized Underwater Glider Technologies[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 68-85. doi: 10.11993/j.issn.2096-3920.2023-0011

“海燕”号谱系化水下滑翔机技术发展与应用

doi: 10.11993/j.issn.2096-3920.2023-0011
基金项目: 国家重点研发计划项目(2016YFC0301100)、中国博士后科学基金(2022TQ0233, 2022M722367)
详细信息
    作者简介:

    杨绍琼(1986-), 男, 博士, 副教授, 主要研究方向为深海智能装备设计与应用

    通讯作者:

    杨 明(1992-), 男, 博士, 助理研究员, 主要研究方向为水下滑翔机系统设计与优化方法

  • 中图分类号: U674.941; TP242

Development and Application of Petrel Serialized Underwater Glider Technologies

  • 摘要: 水下滑翔机作为一种借助水动力实现水中滑翔前进的无人水下航行器, 其技术主要涉及水动力外形、耐压主体等总体设计技术,浮力驱动、姿态调节、能源动力、智能控制和传感集成等单元技术, 以及路径规划、协同组网等应用技术。我国最早研制成功的水下滑翔机——“海燕”号由天津大学深海智能装备团队主体研发, 自2002年起, 经过二十余年的发展, 已在工作深度、续航里程和传感集成应用等主要方面实现了谱系化发展。文中综述了“海燕”号谱系化水下滑翔机总体设计、浮力驱动、能源动力、协同组网以及海上试验应用等关键技术、先进方法和创新理论发展的现状, 并与仿生赋能相结合, 探索预测水下滑翔机技术发展趋势, 以期为我国无人水下航行器技术快速发展提供参考。

     

  • 图  1  “海燕-L”航行轨迹

    Figure  1.  Navigation trajectory of Petrel-L

    图  2  水下滑翔机主要组成部分

    Figure  2.  Main components of an underwater glider

    图  3  水下航行器水动力外形设计示意图

    Figure  3.  Hydrodynamic profile design of the underwater vehicles

    图  4  水下滑翔机不同耐压壳体设计图

    Figure  4.  Different pressure-resistant shells of the underwater glider

    图  5  多学科优化后的“海燕-L”长航程水下滑翔机海上试验回收现场

    Figure  5.  Sea trial recovery scene of Petrel-L long-range-voyage underwater glider after multidisciplinary optimization

    图  6  水下滑翔机双级液压泵浮力驱动系统原理图

    Figure  6.  Schematic diagram of an underwater glider two-stage hydraulic pump buoyancy drive system

    图  7  “海燕-X”水下滑翔机浮力驱动系统实物图

    Figure  7.  Physical drawing of Petrel-X underwater glider buoyancy drive system

    图  8  “海燕”水下滑翔机混合被动浮力补偿系统

    Figure  8.  Hybrid passive buoyancy compensation system of Petrel

    图  9  鱼鳔及类鱼鳔二级浮力驱动系统

    Figure  9.  Fish bladder and Fish-bladder-like buoyancy drive system

    图  10  温差能水下滑翔机及其浮力驱动系统

    Figure  10.  Thermal energy underwater glider and its buoyancy drive system

    图  11  热电转换浮力驱动系统工作原理

    Figure  11.  Working principle of the thermoelectric conversion buoyancy drive system

    图  12  海洋温差能固-液相变工作原理图

    Figure  12.  Working principle of the solid-liquid phase change of ocean thermal energy

    图  13  水下滑翔机集成搭载模块化温差能捕获装置

    Figure  13.  Underwater glider with integrated modular thermal energy capture device

    图  14  风帆驱动水面/水下多航态航行器工作模式示意图

    Figure  14.  Schematic diagram of the working mode of sail-driven surface/underwater multi-mode vehicle

    图  15  风帆驱动多航态水下滑翔机原理样机及其水域闭环航迹图

    Figure  15.  Principle prototype of wind-sail driven multi-mode underwater glider and its closed-loop track diagram

    图  16  水下滑翔机多层级编队协同控制系统结构

    Figure  16.  Architecture of the multi-level formation collaborative control system of underwater glides

    图  17  “海燕-L”长航程水下滑翔机

    Figure  17.  Petrel-L long-range underwater glider

    图  18  TUCOS-I型自主水下航行器传感器分布

    Figure  18.  Sensors distribution of the TUCOS-I autonomous undersea vehicle

    图  19  “海燕-湍流”水下滑翔机为期127 d湍流观测海上试验任务的布放与回收现场图

    Figure  19.  Petrel-turbulence underwater glider deployment and recovery of its 127-day marine turbulence observation mission

    图  20  2019年夏季中国第10次北极科学考察中“海燕”水下滑翔机观测区域内垂直断面温度分布

    Figure  20.  Vertical distribution of temperature observed by Petrel underwater gliders in the summer of 2019, China’s tenth Arctic scientific expedition

    图  21  数字孪生驱动的快速个性化设计和全生命周期体系结构水下滑翔机管理框架

    Figure  21.  Architecture of Digital twin-driven rapid individualized design and full lifecycle management of underwater gliders

    表  1  “海燕”谱系化水下滑翔机主要发展历程

    Table  1.   The main development process of Petrel serialized underwater gliders

    重要进展
    年份
    水域试验地点水下滑翔机类型连续航行
    时间/d
    实际航行里程
    /km
    设计最大潜深
    /m
    实际最大潜深
    /m
    2002—2007青年湖、千岛湖及
    抚仙湖等
    温差能驱动水下滑翔机≥100
    电能混合驱动水下滑翔机≥100
    2009千岛湖、抚仙湖海燕≥500
    2015南海温差能水下滑翔机40706.4≥1 0001 025
    海燕-II421 108.4≥1 5001 514
    海燕-20026≈600.0≥200≈240
    2018马里亚纳海沟海燕-X6≥10 0008 213
    马里亚纳海沟海燕-4000≥4 000≈4 092
    南海海燕-L1413 619.6≥1 0001 010
    2019南海海燕-4000681 423.0≥4 0003 419
    海燕-L3014 435.0≥1 0001 026
    2020马里亚纳海沟海燕-XPLUS511 00010 619
    2021马里亚纳海沟至南海海燕-L2085 506.0≥1 000≈992
    下载: 导出CSV

    表  2  新型水下滑翔机不同壳体性能对比

    Table  2.   Performance comparison of four underwater glider shells

    壳体形式性能参数
    质量/kg排水体积/L重排比压缩率/%
    圆柱壳13.3433.020.400.35
    MIS7.1124.540.290.59
    NARC10.4633.020.320.32
    RAC9.2031.670.290.57
    下载: 导出CSV
  • [1] 武建国. 混合驱动水下滑翔器系统设计与性能分析[D]. 天津: 天津大学, 2010.
    [2] Liu F, Wang Y H, Wu Z L, et al. Motion Analysis and Trials of the Deep Sea Hybrid Underwater Glider Petrel-II[J]. China Ocean Engineering, 2017, 31(1): 55-62. doi: 10.1007/s13344-017-0007-4
    [3] Yang M, Wang Y H, Wang C, et al. Digital Twin-Driven Industrialization Development of Underwater Gliders[J]. IEEE Transactions On Industrial Informatics, 2023: 1-11.
    [4] Wang P, Wang Y H, Yang S Q, et al. Analysis, Simulation and Experimental Study of the Tensile Stress Calibration of Ceramic Cylindrical Pressure Housings[J]. Journal of Marine Science and Engineering, 2022, 10(4): 499. doi: 10.3390/jmse10040499
    [5] Sun T S, Wang Y H, Yang S Q, et al. Design, Hydrodynamic Analysis, and Testing of a Bioinspired Controllable Wing Mechanism with Multi-Locomotion Modes for Hybrid-Driven Underwater Gliders[J]. Science China-Technological Sciences, 2021, 64(12): 2688-2708. doi: 10.1007/s11431-021-1890-7
    [6] Zhu Y Q, Liu Y H, Zhang L H, et al. Dynamic Model and Motion Characteristics of an Underwater Glider with Manta-Inspired Wings[J]. Journal of Bionic Engineering, 2022, 19(1): 1-15. doi: 10.1007/s42235-021-00130-8
    [7] Wang Y H, Wang C, Yang M, et al. Glide Performance Analysis of Underwater Glider with Sweep Wings Inspired by Swift[J]. Frontiers in Marine Science, 2022, 9: 1048328. doi: 10.3389/fmars.2022.1048328
    [8] Yang M, Wang Y H, Yang S Q, et al. Shape Optimization of Underwater Glider Based on Approximate Model Technology[J]. Applied Ocean Research, 2021, 110: 102580. doi: 10.1016/j.apor.2021.102580
    [9] Sun T S, Chen G Y, Yang S Q, et al. Design and Optimization of a Bio-Inspired Hull Shape for AUV by Surrogate Model Technology[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 1057-1074. doi: 10.1080/19942060.2021.1940287
    [10] Liu Y H, Yu Z J, Zhang L H, et al. A Fine Drag Coefficient Model for Hull Shape of Underwater Vehicles[J]. Ocean Engineering, 2021, 236: 109361. doi: 10.1016/j.oceaneng.2021.109361
    [11] 张连洪, 张宇航, 杨绍琼, 等. 一种基于低速、小振幅周期运动CFD数值模拟的水下滑翔机附加质量求解方法[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(3): 239-246.

    Zhang Lian-hong, Zhang Yu-hang, Yang Shao-qiong, et al. Method for Solving Added Mass of Underwater Glider Based on CFD of Low-Speed and Small-Amplitude Periodic Motion[J]. Journal of Tianjin University, 2022, 55(3): 239-246.
    [12] Yang M, Wang Y H, Zhang X H, et al. Parameterized Dynamic Modeling and Spiral Motion Pattern Analysis for Underwater Gliders[J]. IEEE Journal of Oceanic Engineering, 2023, 48(1): 112-126. doi: 10.1109/JOE.2022.3181896
    [13] Yang M, Yang S Q, Wang Y H, et al. Optimization Design of Neutrally Buoyant Hull for Underwater Gliders[J]. Ocean Engineering, 2020, 209: 107512. doi: 10.1016/j.oceaneng.2020.107512
    [14] Wang C, Yang M, Wang Y H, et al. Design and Optimization of Cylindrical Hull with Non-Uniform Arch Ribs for Underwater Gliders Based on Approximate Model and Experiments[J]. Ocean Engineering, 2022, 259: 111831. doi: 10.1016/j.oceaneng.2022.111831
    [15] Yang M, Wang Y H, Chen Y, et al. Data-Driven Optimization Design of a Novel Pressure Hull for AUV[J]. Ocean Engineering, 2022, 257: 111562. doi: 10.1016/j.oceaneng.2022.111562
    [16] Wang P, Wang X, Wang Y. Dynamics Modeling and Analysis of an Underwater Glider with Dual-Eccentric Attitude Regulating Mechanism Using Dual Quaternions[J]. Journal of Marine Science and Engineering, 2023, 11(1): 5-28.
    [17] Wang S X, Yang M, Niu W D, et al. Multidisciplinary Design Optimization of Underwater Glider for Improving Endurance[J]. Structural and Multidisciplinary Optimization, 2021, 63(6): 2835-2851. doi: 10.1007/s00158-021-02844-z
    [18] Yang M, Wang Y H, Liang Y, et al. A New Approach to System Design Optimization of Underwater Gliders[J]. IEEE- ASME Transactions on Mechatronics, 2022, 27(5): 3494-3505. doi: 10.1109/TMECH.2022.3143125
    [19] Wang J, Zhang H, Wang Y, et al. Dynamic Simulation of Buoyancy Engine of Underwater Glider Based on Experimentation[C]//IEEE Oceans 2017-Aberdeen Conference. the UK: IEEE, 2017.
    [20] Liang Y, Zhang L H, Wang Y H, et al. Dynamic-Thermal Modeling and Motion Analysis for Deep-Sea Glider with Passive Buoyancy Compensation Liquid[J]. Ocean Engineering, 2021, 238: 109704. doi: 10.1016/j.oceaneng.2021.109704
    [21] Wang S X, Li H Z, Wang Y H, et al. Dynamic Modeling and Motion Analysis for a Dual-Buoyancy-Driven Full Ocean Depth Glider[J]. Ocean Engineering, 2019, 187: 106163. doi: 10.1016/j.oceaneng.2019.106163
    [22] Xie X D, Wang Y H, Song Y, et al. Development, Optimization, and Evaluation of a Hybrid Passive Buoyancy Compensation System for Underwater Gliders[J]. Ocean Engineering, 2021, 242: 110115. doi: 10.1016/j.oceaneng.2021.110115
    [23] Liang Y, Zhang L H, Yang M, et al. Dynamic Behavior Analysis and Bio-Inspired Improvement of Underwater Glider with Passive Buoyancy Compensation Gas[J]. Ocean Engineering, 2022, 257: 111644. doi: 10.1016/j.oceaneng.2022.111644
    [24] 严升, 张润锋, 杨绍琼, 等. 水下滑翔机纵垂面变浮力过程建模与控制优化[J]. 中国机械工程, 2022, 33(1): 109-117.

    Yan Sheng, Zhang Run-feng, Yang Shao-qiong, et al. Modelling and Control Optimization for Underwater Gliders of Variable Buoyancy Processes in Vertical Plane[J]. China Mechanical Engineering, 2022, 33(1): 109-117.
    [25] Yang Y P, Liu Y H, Wang Y H, et al. Dynamic Modeling and Motion Control Strategy for Deep-Sea Hybrid-Driven Underwater Gliders Considering Hull Deformation and Seawater Density Variation[J]. Ocean Engineering, 2017, 143: 66-78. doi: 10.1016/j.oceaneng.2017.07.047
    [26] Yang M, Liang Y, Wang Y H, et al. Optimal Matching Analysis of Net Buoyancy and Pitching Angle for Underwater Gliders[J]. China Ocean Engineering, 2022, 36(5): 697-706. doi: 10.1007/s13344-022-0062-3
    [27] Song Y, Wang Y H, Yang S Q, et al. Sensitivity Analysis and Parameter Optimization of Energy Consumption for Underwater Gliders[J]. Energy, 2020, 191: 116506. doi: 10.1016/j.energy.2019.116506
    [28] Song Y, Ye H J, Wang Y H, et al. Energy Consumption Modeling for Underwater Gliders Considering Ocean Currents and Seawater Density Variation[J]. Journal of Marine Science and Engineering, 2021, 9(11): 1164. doi: 10.3390/jmse9111164
    [29] Song Y, Xie X D, Wang Y H, et al. Energy Consumption Prediction Method Based on LSSVM-PSO Model for Autonomous Underwater Gliders[J]. Ocean Engineering, 2021, 230: 108982. doi: 10.1016/j.oceaneng.2021.108982
    [30] Yang M, Zhao L, Wang Y H, et al. Motion Condition Monitoring of Underwater Gliders Based on Deep Learning and Dynamic Identification[J]. Ocean Engineering, 2023, 272: 113793. doi: 10.1016/j.oceaneng.2023.113793
    [31] 王延辉, 张新海, 杨明, 等. 基于数据驱动的水下滑翔机生物污损监测方法[J]. 天津大学学报(自然科学与工程技术版), 2023, 56(1): 93-102.

    Wang Yan-hui, Zhang Xin-hai, Yang Ming, et al. Data-Driven Method for Underwater Glider Biofouling Monitoring[J]. Journal of Tianjin University, 2023, 56(1): 93-102.
    [32] Wu H Y, Niu W D, Wang S X, et al. An Optimization Method for Control Parameters of Underwater Gliders Considering Energy Consumption and Motion Accuracy[J]. Applied Mathematical Modelling, 2021, 90: 1099-1119. doi: 10.1016/j.apm.2020.10.015
    [33] 王树新, 王延辉, 张大涛, 等. 温差能驱动的水下滑翔器设计与实验研究[J]. 海洋技术, 2006, 25(1): 1-5.

    Wang Shu-xin, Wang Yan-hui, Zhang Da-tao, et al. Design and Trial on an Underwater Glider Propelled by Thermal Engine[J]. Journal of Ocean Technology, 2006, 25(1): 1-5.
    [34] 王延辉, 王树新, 谢春刚. 基于温差能源的水下滑翔器动力学分析与设计[J]. 天津大学学报, 2007, 40(2): 133-138.

    Wang Yan-hui, Wang Shu-xin, Xie Chun-gang. Dynamic Analysis and System Design on an Underwater Glider Propelled by Temperature Difference Energy[J]. Journal of Tianjin University, 2007, 40(2): 133-138.
    [35] Yang Y N, Wang Y H, Ma Z S, et al. A Thermal Engine for Underwater Glider Driven by Ocean Thermal Energy[J]. Applied Thermal Engineering, 2016, 99: 455-464. doi: 10.1016/j.applthermaleng.2016.01.038
    [36] Li B, Yang Y N, Zhang L H, et al. Research on Sailing Range of Thermal-Electric Hybrid Propulsion Underwater Glider and Comparative Sea Trial Based on Energy Consumption[J]. Applied Ocean Research, 2021, 114: 102807. doi: 10.1016/j.apor.2021.102807
    [37] Wang G H, Yang Y N, Wang S X, et al. Efficiency Analysis and Experimental Validation of the Ocean Thermal Energy Conversion with Phase Change Material for Underwater Vehicle[J]. Applied Energy, 2019, 248: 475-488. doi: 10.1016/j.apenergy.2019.04.146
    [38] Wang G H, Yang Y N, Wang S X. Ocean Thermal Energy Application Technologies for Unmanned Underwater Vehicles: A Comprehensive Review[J]. Applied Energy, 2020, 278: 115752. doi: 10.1016/j.apenergy.2020.115752
    [39] Zhang H W, Liu C Y, Yang Y N, et al. Ocean Thermal Energy Utilization Process in Underwater Vehicles: Modelling, Temperature Boundary Analysis, and Sea Trial[J]. International Journal of Energy Research, 2020, 44(4): 2966-2983. doi: 10.1002/er.5123
    [40] Wang G H, Yang Y N, Wang S X. Adaptive Digital Disturbance Rejection Controller Design for Underwater Thermal Vehicles[J]. Journal of Marine Science and Engineering, 2021, 9(4): 406. doi: 10.3390/jmse9040406
    [41] Wang G H, Yang Y N, Wang S X, et al. Modification of the Phase Change Transfer Model for Underwater Vehicles: A Molecular Dynamics Approach[J]. International Journal of Energy Research, 2020, 44(14): 11323-11344. doi: 10.1002/er.5748
    [42] Wang G H, Yang Y N, Wang S X. Thermophysical Properties Analysis of Graphene-Added Phase Change Materials and Evaluation of Enhanced Heat Transfer Effect in Underwater Thermal Vehicles[J]. Journal of Molecular Liquids, 2022, 348: 118048. doi: 10.1016/j.molliq.2021.118048
    [43] Zhang H W, Ma X H, Yang Y N. An External Ocean Thermal Energy Power Generation Modular Device for Powering Smart Float[J]. Energies, 2022, 15: 3747. doi: 10.3390/en15103747
    [44] Zhang H W, Liu J, Yang Y N. Thermal Energy for Movement Glider Buoyancy Adjustment Using Ocean Thermal Energy[J]. Sea Technology, 2021, 62(5): 25-27.
    [45] 王国晖, 杨亚楠, 王延辉, 等. 海洋温差能供电水下滑翔机的液电转换过程建模与效率分析[J]. 水下无人系统学报, 2021, 29(4): 451-458.

    Wang Guo-hui, Yang Ya-nan, Wang Yan-hui, et al. Modeling and Efficiency Analysis of the Hydro-Electric Conversion Process of Underwater Glider Powered by Ocean Thermal Energy[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 451-458.
    [46] Liu B X, Yang Y N, Wang S X, et al. A Dual-Modal Unmanned Vehicle Propelled by Marine Energy: Design, Stability Analysis and Sea Trial[J]. Ocean Engineering, 2022, 247: 110702. doi: 10.1016/j.oceaneng.2022.110702
    [47] Liu B X, Wang S X, Yang Y N. Petrel-Dual Hybrid Vehicle Navigates on and under the Water[J]. Sea Technology, 2021, 62(5): 21-24.
    [48] 徐文, 李建龙, 李一平, 等. 无人潜水器组网观测探测技术进展与展望[J]. 前瞻科技, 2022, 1(2): 60-78. doi: 10.3981/j.issn.2097-0781.2022.02.005

    Xu Wen, Li Jian-long, Li Yi-ping, et al. Networks of Unmanned Underwater Vehicles for Ocean Exploration: Advances and Prospects[J]. Science and Technology Foresight, 2022, 1(2): 60-78. doi: 10.3981/j.issn.2097-0781.2022.02.005
    [49] Yang Y, Wang S X, Wu Z L, et al. Motion Planning for Multi-HUG Formation in an Environment with Obstacles[J]. Ocean Engineering, 2011, 38(17-18): 2262-2269. doi: 10.1016/j.oceaneng.2011.10.008
    [50] Xue D Y, Wu Z L, Wang Y H, et al. Coordinate Control, Motion Optimization and Sea Experiment of a Fleet of Petrel-II Gliders[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 17-31. doi: 10.1186/s10033-018-0210-0
    [51] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.

    Shen Xin-lei, Wang Yan-hui, Yang Shao-qiong, et al. Development of Underwater Gliders: An Overview and Prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
    [52] Li S F, Zhang F M, Wang S X, et al. Constructing the Three-Dimensional Structure of an Anticyclonic Eddy with the Optimal Configuration of an Underwater Glider Network[J]. Applied Ocean Research, 2020, 95: 101893. doi: 10.1016/j.apor.2019.101893
    [53] Li S F, Wang S X, Zhang F M, et al. Constructing the Three-Dimensional Structure of an Anticyclonic Eddy on the South China Sea Using Multiple Underwater Gliders[J]. Journal of Atmospheric and Oceanic Technology, 2019, 36(12): 2449-2470. doi: 10.1175/JTECH-D-19-0006.1
    [54] Zhang R F, Yang S Q, Wang Y H, et al. Three-Dimensional Regional Oceanic Element Field Reconstruction with Multiple Underwater Gliders in the Northern South China Sea[J]. Applied Ocean Research, 2020, 105: 102405. doi: 10.1016/j.apor.2020.102405
    [55] Zhang R F, Yang S Q, Wang Y H, et al. Regional Ocean Current Field Construction Based on an Empirical Bayesian Kriging Algorithm Using Multiple Underwater Gliders[J]. Journal of Coastal Research, 2020, 99(Sp1): 41-47. doi: 10.2112/SI99-006.1
    [56] Ma X J, Wang Y H, Zhang G S, et al. Discrete-Time Formation Control of Multiple Heterogeneous Underwater Gliders[J]. Ocean Engineering, 2022, 258: 111728. doi: 10.1016/j.oceaneng.2022.111728
    [57] 张润锋, 杨绍琼, 牛文栋, 等. 强扰动环境下水下滑翔机编队稳定性分析[J]. 舰船科学技术, 2020, 42(23): 67-71.

    Zhang Run-feng, Yang Shao-qiong, Niu Wen-dong, et al. Stability Analysis of Underwater Glider Fleet under Strong Disturbance[J]. Ship Science and Technology, 2020, 42(23): 67-71.
    [58] Wang Y H, Shao S, Wang S X, et al. Measurement Error Analysis of Multibeam Echosounder System Mounted on the Deep-Sea Autonomous Underwater Vehicle[J]. Ocean Engineering, 2014, 91: 111-121. doi: 10.1016/j.oceaneng.2014.09.002
    [59] Li C, Wang Y H, Wu Z L. Stability and Economy Analysis Based on Computational Fluid Dynamics and Field Testing of Hybrid-Driven Underwater Glider with the Water Quality Sensor in Danjiangkou Reservoir[J]. Advances in Mechanical Engineering, 2015, 7(12): 2071731145.
    [60] Liu Y H, Yang Y P, Wang Y H, et al. Vibration Analysis of the Free-Falling Microstructure Profiler[J]. Journal of Vibration and Acoustics, 2016, 138(6): 61012. doi: 10.1115/1.4034378
    [61] Ma W, Wang Y H, Wang S X, et al. Optimization of Hydrodynamic Parameters for Underwater Glider Based on the Electromagnetic Velocity Sensor[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(14): 5019-5032. doi: 10.1177/0954406219840372
    [62] 尹云龙, 杨明, 杨绍琼, 等. 基于水下滑翔机的海洋声学背景场观测技术[J]. 水下无人系统学报, 2019, 27(5): 555-561.

    Yin Yun-long, Yang Ming, Yang Shao-qiong, et al. Research on Observation Technology of Oceanic Acoustic Background Field Based on Underwater Glider[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 555-561.
    [63] 杨绍琼, 成丹, 陈光耀, 等. 面向典型海洋现象观测的水下滑翔机应用综述[J]. 热带海洋学报, 2022, 41(3): 54-74.

    Yang Shao-qiong, Cheng Dan, Chen Guang-yao, et al. Review on the Application of Underwater Gliders for Observing Typical Ocean Phenomena[J]. Journal of Tropical Oceanography, 2022, 41(3): 54-74.
    [64] 吴尚尚, 李阁阁, 兰世泉, 等. 水下滑翔机导航技术发展现状与展望[J]. 水下无人系统学报, 2019, 27(5): 529-540.

    Wu Shang-shang, Li Ge-ge, Lan Shi-quan, et al. Present Situation and Prospect of Navigation Technologies for Underwater Glider[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 529-540.
    [65] 何柏岩, 杜金辉, 杨绍琼, 等. 基于VMD-LSSVM的水下滑翔机深平均流预测[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(4): 388-396.

    He Bai-yan, Du Jin-hui, Yang Shao-qiong, et al. Prediction of Underwater Glider Depth-Averaged Current Velocity Based on VMD-LSSVM[J]. Journal of Tianjin University, 2021, 54(4): 388-396.
    [66] Liu J, Wang Y H, Yang M. Improved Dissipation Rate Estimation Method Based on Time-Varying Glide Parameter Analysis of Underwater Gliders[J]. Ocean Engineering, 2023, 269: 113492. doi: 10.1016/j.oceaneng.2022.113492
    [67] Wang Y H, Xu T Y, Wu Z L, et al. Structure Optimal Design and Performance Test of Airfoil Shear Probes[J]. IEEE Sensors Journal, 2015, 15(1): 27-36. doi: 10.1109/JSEN.2014.2336853
    [68] 马伟, 王延辉, 徐田雨. 微结构湍流测量水下滑翔机设计与试验研究[J]. 机械工程学报, 2017, 53(9): 22-29. doi: 10.3901/JME.2017.09.022

    Ma Wei, Wang Yan-hui, Xu Tian-yu, et al. Design and Sea Trials of the Underwater Glider for Micro-Structure Turbulence Measurement[J]. Journal of Mechanical Engineering, 2017, 53(9): 22-29. doi: 10.3901/JME.2017.09.022
    [69] Ma W, Wang Y H, Yang S Q, et al. Observation of Internal Solitary Waves Using an Underwater Glider in the Northern South China Sea[J]. Journal of Coastal Research, 2018, 34(5): 1188-1195.
    [70] Ma W, Wang Y H, Wang S X, et al. Absolute Current Estimation and Sea-Trial Application of Glider-Mounted AD2CP[J]. Journal of Coastal Research, 2019, 35(6): 1343-1350. doi: 10.2112/JCOASTRES-D-18-00176.1
    [71] Li S, Wang S, Zhang F, et al. Observing an Anticyclonic Eddy in the South China Sea Using Multiple Underwater Gliders[C]//Oceans 2018 MTS/IEEE Charleston. Charleston, SC, USA: IEEE, 2018: 1-6.
    [72] 杨绍琼, 李逸铭, 陈红霞, 等. 基于水下滑翔机观测数据的白令海海盆区域温度及溶解氧特征分析[J]. 海洋科学进展, 2021, 39(3): 355-363.

    Yang Shao-qiong, Li Yi-ming, Chen Hong-xia, et al. Characteristic Analysis on Temperature and Dissolved Oxygen in the Bering Sea Based on Underwater Glider Observation Data[J]. Advances in Marine Science, 2021, 39(3): 355-363.
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  447
  • HTML全文浏览量:  53
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 修回日期:  2023-02-27
  • 录用日期:  2023-02-28

目录

    /

    返回文章
    返回
    服务号
    订阅号