• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

均匀双圆环阵虚拟成阵方法研究

任笑莹 王英民 张立琛 王奇 廉杰

任笑莹, 王英民, 张立琛, 等. 均匀双圆环阵虚拟成阵方法研究[J]. 水下无人系统学报, 2023, 31(5): 735-745 doi: 10.11993/j.issn.2096-3920.202206012
引用本文: 任笑莹, 王英民, 张立琛, 等. 均匀双圆环阵虚拟成阵方法研究[J]. 水下无人系统学报, 2023, 31(5): 735-745 doi: 10.11993/j.issn.2096-3920.202206012
REN Xiaoying, WANG Yingmin, ZHANG Lichen, WANG Qi, LIAN Jie. Research on Virtual Array Transform Method of Uniform Bicircular Array[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 735-745. doi: 10.11993/j.issn.2096-3920.202206012
Citation: REN Xiaoying, WANG Yingmin, ZHANG Lichen, WANG Qi, LIAN Jie. Research on Virtual Array Transform Method of Uniform Bicircular Array[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 735-745. doi: 10.11993/j.issn.2096-3920.202206012

均匀双圆环阵虚拟成阵方法研究

doi: 10.11993/j.issn.2096-3920.202206012
基金项目: 国家自然科学基金项目资助(51879221, 62001392)
详细信息
    作者简介:

    任笑莹(1989-), 女, 在读博士, 主要研究方向为阵列信号处理

  • 中图分类号: TJ630.34; U674

Research on Virtual Array Transform Method of Uniform Bicircular Array

  • 摘要: 针对在航空声呐系统有限空间内双圆环阵因孔径受限而导致的目标分辨力和空间分辨率不足的问题, 提出了一种可以实现双圆环阵孔径扩展的虚拟成阵方法。该方法利用双圆环阵模态域信号模型和双直线阵阵元域信号模型之间的关系, 设计了采样矩阵和相位旋转矩阵, 将均匀双圆环阵转换为均匀双直线阵。考虑了实际双圆环阵中的阵元位置误差、阵元间耦合、观察角度误差等的影响, 利用最小二乘准则提出了一种将实际双圆环阵近似转换为均匀双直线阵的优化模型, 并给出了迭代求解方法。与合成孔径方法相比, 该方法是对基阵阵列流形的一种预处理, 对使用过程中基阵的运动特性没有特殊要求; 与模态域转换方法相比, 该方法可以体现目标双直线阵的阵元间隔和两线阵间距, 充分利用了双直线阵相对于单直线阵的优势。仿真实验和水池实验结果表明, 双圆环阵的孔径得到了扩展, 虚拟阵波束图比双圆环阵波束图的主瓣更窄且旁瓣更低, 有效提高了目标分辨力和空间分辨率。

     

  • 图  1  空间中均匀双圆环阵示意图

    Figure  1.  Uniform bicircular array in space

    图  2  空间中均匀双直线阵示意图

    Figure  2.  Uniform double linear array in space

    图  3  仿真实验中均匀双圆环阵阵元位置

    Figure  3.  Element position of uniform bicircular array in simulation experiment

    图  4  目标均匀双直线阵阵元位置

    Figure  4.  Element position of uniform double linear array

    图  5  仿真实验中理想双圆环阵CBF波束图

    Figure  5.  Beam pattern of ideal bicircular array in simulation experiment using CBF method

    图  6  仿真实验中理想双圆环阵SLC波束图

    Figure  6.  Beam pattern of ideal bicircular array in simulation experiment using SLC method

    图  7  仿真实验中有误差双圆环阵的CBF波束图

    Figure  7.  Beam pattern of bicircular array with errors in simulation experiment using CBF method

    图  8  仿真实验中有误差双圆环阵的SLC波束图

    Figure  8.  Beam pattern of bicircular array with errors in simulation experiment using SLC method

    图  9  水池实验中实际双圆环阵阵元位置

    Figure  9.  Element position of actual bicircular array in water tank experiment

    图  10  水池实验系统

    Figure  10.  Water tank experimental system

    图  11  水池实验中实际双圆环阵CBF波束图

    Figure  11.  Beam pattern of actual bicircular array in water tank experiment using CBF method

    图  12  水池实验中实际双圆环阵SLC波束图

    Figure  12.  Beam pattern of actual bicircular array in water tank experiment using SLC method

  • [1] Qin L, Li C L, Du Y X, et al. DOA estimation and mutual coupling calibration algorithm for array in plasma environment[J]. IEEE Transactions on Plasma Science, 2020, 48(6): 2075-2082. doi: 10.1109/TPS.2020.2987041
    [2] Jouny I. Beamspace processing of compressively sampled signals received via a uniform linear array[C]//IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. Montreal: IEEE, 2020: 573-574.
    [3] Huang G P, Wang Y Z, Benesty J, et al. Combined differential beamforming with uniform linear microphone arrays[C]//IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Toronto: IEEE, 2021: 781-785.
    [4] Wei J, Chen S W, Chang A C. Efficient hybrid DOA estimation for massive uniform linear array[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2019, 102(5): 721-724.
    [5] Chen P C, Vaidyanathan P P. Convolutional beamspace for linear arrays[J]. IEEE Transactions on Signal Processing, 2020, 68: 5395-5410. doi: 10.1109/TSP.2020.3021670
    [6] Liu Z W, Yang C M, Jiang Y, et al. Array gain of a linear array in an ocean waveguide[J]. Applied Sciences-Basel, 2021, 11(11): 5046. doi: 10.3390/app11115046
    [7] Gan N, Cui G L, Yang J, et al. Sparse linear array design via membrane algorithm[C]//Radar Conference(RadarConf). Boston: IEEE, 2019: 1-5.
    [8] Aslan Y. Optimization of virtually aperiodic linear sparse arrays[J]. Microwave and Optical Technology Letters, 2022, 64(2): 318-324. doi: 10.1002/mop.33086
    [9] Feuillet J P, Allensworth W S, Newhall B K. Nonambiguous beamforming for a high resolution twin-line array[J]. Journal of the Acoustical Society of America, 1995, 97(5): 3292.
    [10] 李智忠, 王森, 许忠良, 等. 互谱相关的舷侧双线阵空间谱估计方法[J]. 系统仿真学报, 2019, 31(5): 978-983. doi: 10.16182/j.issn1004731x.joss.17-0179

    Li Zhizhong, Wang Sen, Xu Zhongliang, et al. Spatial spectrum estimation method of flank twin-line array based on cross-spectrum correlation[J]. Journal of System simulation, 2019, 31(5): 978-983. doi: 10.16182/j.issn1004731x.joss.17-0179
    [11] 袁静珍. 基于移相相减的双线阵左右舷分辨方法[J]. 火力与指挥控制, 2019, 44(9): 130-134. doi: 10.3969/j.issn.1002-0640.2019.09.025

    Yuan Jingzhen. Port/starboard diserimination method based on phase shift subtraction in towed twin-line array fire[J]. Control & Command Control, 2019, 44(9): 130-134. doi: 10.3969/j.issn.1002-0640.2019.09.025
    [12] 郭乔鹤. 基于双线阵的船噪声信号被动检测技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
    [13] 刘振, 苏晓龙, 刘天鹏, 等. 基于矩阵差分的远场和近场混合源定位方法[J]. 雷达学报, 2021, 10(3): 432-442.

    Liu Zhen, Su Xiaolong, Liu Tianpeng, et al. Matrix differencing method for mixed far-field and near-field source localization[J]. Journal of Radars, 2021, 10(3): 432-442.
    [14] Wax M, Sheinvald J. Direction finding of coherent signals via spatial smoothing for uniform circular arrays[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(5): 613-620. doi: 10.1109/8.299559
    [15] 宋昕, 汪晋宽, 刘文敏, 等. 基于均匀圆阵的稳健迭代波束形成算法[J]. 东北大学学报(自然科学版), 2017, 38(10): 1369-1372. doi: 10.12068/j.issn.1005-3026.2017.10.001

    Song Xin, Wang Jinkuan, Liu Wenmin, et al. Robust iterative beamforming algorithm based on uniform circular array[J]. Journal of Northeastern University (Natural Science), 2017, 38(10): 1369-1372. doi: 10.12068/j.issn.1005-3026.2017.10.001
    [16] Zhao H, Hou Y, Mao X. A synthetic layout method for distributed nested circular array based on ant colony algorithm[C]//IET International Radar Conference. Chongqing, China: IRC, 2020: 955-959.
    [17] Huang G, Benesty J, Chen J. On the design of frequency-invariant beampatterns with uniform circular microphone arrays[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, 25(5): 1140-1153. doi: 10.1109/TASLP.2017.2689681
    [18] Huang G, Benesty J, Chen J. Design of robust concentric circular differential microphone arrays[J]. The Journal of the Acoustical Society of America, 2017, 141(5): 3236. doi: 10.1121/1.4983122
    [19] Huang G, Chen J, Benesty J. Insights into frequency-invariant beamforming with concentric circular microphone arrays[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2018, 26(12): 2305-2318. doi: 10.1109/TASLP.2018.2862826
    [20] 孙超. 水下多传感器阵列信号处理[M]. 西安: 西北工业大学出版社, 2007.
    [21] Davies D. A transformation between the phasing techniques required for linear and circular aerial arrays[J]. Proceedings of the Institution of Electrical Engineers, 2010, 112(11): 2041-2045.
    [22] 鄢社锋, 马远良. 传感器阵列波束优化设计及应用[M]. 北京: 科学出版社, 2009.
    [23] Abramowitz M, Stegun I A. Handbook of mathematical functions[M]. New York: Dover Publications, 1965.
    [24] Ziskind I, Wax M. Maximum likelihood localization of multiple sources by alternating projection[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1988, 36(10): 1553-1560. doi: 10.1109/29.7543
    [25] 鄢社锋. 水听器阵超增益特性及信号处理研究[D]. 西安: 西北工业大学, 2001.
  • 加载中
图(12)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  13
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-12
  • 修回日期:  2022-07-12
  • 网络出版日期:  2022-11-25

目录

    /

    返回文章
    返回
    服务号
    订阅号