• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氮气挤代的推进剂供应系统动态特性研究

王谦 秦侃 郝常乐 张安静 罗凯 党建军

王谦, 秦侃, 郝常乐, 等. 基于氮气挤代的推进剂供应系统动态特性研究[J]. 水下无人系统学报, 2023, 31(5): 760-770 doi: 10.11993/j.issn.2096-3920.202205007
引用本文: 王谦, 秦侃, 郝常乐, 等. 基于氮气挤代的推进剂供应系统动态特性研究[J]. 水下无人系统学报, 2023, 31(5): 760-770 doi: 10.11993/j.issn.2096-3920.202205007
WANG Qian, QIN Kan, HAO Changle, ZHANG Anjing, LUO Kai, DANG Jianjun. Dynamic Characteristics of Propellant Supply System Using Nitrogen[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 760-770. doi: 10.11993/j.issn.2096-3920.202205007
Citation: WANG Qian, QIN Kan, HAO Changle, ZHANG Anjing, LUO Kai, DANG Jianjun. Dynamic Characteristics of Propellant Supply System Using Nitrogen[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 760-770. doi: 10.11993/j.issn.2096-3920.202205007

基于氮气挤代的推进剂供应系统动态特性研究

doi: 10.11993/j.issn.2096-3920.202205007
详细信息
    作者简介:

    王谦:王 谦(1998-), 男, 在读硕士, 主要研究方向为水下能源与推动力技术

  • 中图分类号: TJ630.32

Dynamic Characteristics of Propellant Supply System Using Nitrogen

  • 摘要: 燃料供应系统能否将燃料按一定流量和比例快速输送至燃烧室进行燃烧, 以供发动机做功是鱼雷启动过程的决定性因素。文中建立了适用于鱼雷能源供应系统的一维可压缩数值仿真程序, 用于基于氮气挤代的典型鱼雷推进剂供应系统模型的动态特性仿真; 通过经典文献及Fluent数值仿真方法对一维程序进行交互验证, 一维仿真结果与两者相近, 程序可用于对推进剂供应系统模型内部非定常流动状态的仿真。研究了活门直径、高压气舱压力及推进剂舱容积对推进剂供应系统模型动态响应特性的影响。结果表明, 活门直径的增大可以缩短系统的平衡时间并减弱高压气舱压力变化对系统平衡时间的影响; 在研究范围内, 推进剂舱容积的增大, 也会导致系统平衡时间的延长以及最终稳定压力的降低。

     

  • 图  1  某型鱼雷能源供应系统原理图

    Figure  1.  Principle of torpedo energy supply system

    图  2  推进剂供应系统结构简图

    Figure  2.  Structure of propellant supply system

    图  3  储存流体信息的控制体

    Figure  3.  Control body for storing fluid information

    图  4  根据实际网格流体信息复制的虚拟网格图

    Figure  4.  Virtual grid copied from actual grid fluid information

    图  5  推进剂舱控制体

    Figure  5.  Propellant camber control body

    图  6  一维程序与L1D代码的验证对比

    Figure  6.  Validation comparison of one-dimensional program and L1D code

    图  7  典型推进剂供应系统模型几何尺寸

    Figure  7.  Geometry of typical propellant supply system model

    图  8  不同时间下系统压力轴线变化图

    Figure  8.  System pressure axis changes under different time

    图  9  速度云图

    Figure  9.  Velocity cloud picture

    图  10  高压气舱与推进剂舱流体参数对比

    Figure  10.  Comparison of fluid parameters between high-pressure chamber and propellant chamber

    图  11  不同活门直径下的系统动态特性分析

    Figure  11.  Analysis of system dynamic characteristics under different valve diameters

    图  12  不同高压气舱压力下系统动态特性对比

    Figure  12.  Comparison of system dynamic characteristics under different pressures of high-pressure chamber

    图  13  不同推进剂舱容积下系统动态特性对比

    Figure  13.  Comparison of system dynamic characteristics under different propellant volumes

    图  14  不同活门直径下系统动态特性对比

    Figure  14.  Comparison of system dynamic characteristics under different valve diameters

    表  1  计算域模型初始状态

    Table  1.   Initial state of computing domain model

    位置压力/Pa温度/K
    x≤0.5 m105348.4
    x>0.5 m104278.7
    下载: 导出CSV

    表  2  系统模型尺寸及初始状态设定

    Table  2.   System model size and initial state setting

    结构部分直径/mm长度/mm容积/L压强/MPa温度/K
    高压气舱d1=35L1=1 6001.520.0300
    活门d2=6L2=60.1300
    管路1d3-1=15L3-1=500.1300
    管路2d3-2=20L3-2=5000.1300
    推进剂舱d4=300L4=340240.1300
    下载: 导出CSV
  • [1] 何心怡, 卢军, 张思宇, 等. 国外鱼雷现状与启示[J]. 数字海洋与水下攻防, 2020, 3(2): 87-93. doi: 10.19838/j.issn.2096-5753.2020.02.001

    He Xinyi, Lu Jun, Zhang Siyu, et al. Research status and enlightenment of foreign torpedoes[J]. Digital Ocean & Underwater Warfare, 2020, 3(2): 87-93. doi: 10.19838/j.issn.2096-5753.2020.02.001
    [2] Qin K, Wang H, Wang X, et al. Thermodynamic and experimental investigation of a metal fuelled steam rankine cycle for unmanned underwater vehicles[J]. Energy Conversion and Management, 2020, 223: 113281. doi: 10.1016/j.enconman.2020.113281
    [3] 李代金, 党建军, 张进军. 鱼雷热动力技术[M]. 西安: 西北工业大学出版社, 2016.
    [4] 赵宽明. 鱼雷燃料舱增压与燃料输送技术[J]. 水下无人系统学报, 1999, 7(2): 26-28.

    Zhao Kuanming. Pressurization and fuel transfer technology of torpedo bunker [J]. Journal of Underwater Unmanned Systems, 1999, 7(2): 26-28.
    [5] 官典, 李世鹏, 刘筑, 等. 横向过载对固体火箭发动机推进剂点火建压过程的影响[J]. 兵工学报, 2021, 42(9): 1877-1887.

    Guan Dian, Li Shipeng, Liu Zhu, et al. Influence of lateral acceleration on ignition transientsof solid rocket motor[J]. Acta Armamentarii, 2021, 42(9): 1877-1887.
    [6] 王堃, 李纯飞, 董苑. 挤压式供应系统气瓶压力仿真[J]. 火箭推进, 2013, 39(2): 63-66. doi: 10.3969/j.issn.1672-9374.2013.02.012

    Wang Kun, Li Chunfei, Dong Yuan. Simulation of cylinder pressure in extruded supply system[J]. Journal of Rocket Propulsion, 2013, 39(2): 63-66. doi: 10.3969/j.issn.1672-9374.2013.02.012
    [7] 王晋忠, 靳登攀, 雷云龙. 能供系统海水挤压燃料过程的数学仿真[J]. 水下无人系统学报, 2004, 12(2): 29-32.

    Wang Jinzhong, Jin Denpan, Lei Yunlong. Mathematic simulation of process of seawater pressurized fuel in energy delivery system[J]. Torpedo Technology, 2004, 12(2): 29-32.
    [8] 罗凯, 王育才. 一种水下热动力能源供应系统的研制[J]. 机床与液压, 2000, 4(1): 8-9. doi: 10.3969/j.issn.1001-3881.2000.01.003

    Luo Kai, Wang Yuncai. Development of an underwater thermal power energy supply system[J]. Machine Tool & Hydraulics, 2000, 4(1): 8-9. doi: 10.3969/j.issn.1001-3881.2000.01.003
    [9] 李代金, 张宇文, 罗凯, 等. 热动力水下航行体能源供应系统动态匹配分析[J]. 机床与液压, 2008, 36(12): 93-95. doi: 10.3969/j.issn.1001-3881.2008.12.030

    Li Daijin, Zhang Yuwei, Luo Kai, et al. Research on dynamic matching technology of underwater heatpower supply system[J]. Machine Tool & Hydraulics, 2008, 36(12): 93-95. doi: 10.3969/j.issn.1001-3881.2008.12.030
    [10] Roy S. An Introduction to Fluid Dynamics and Numerical Solution of Shock Tube Problem by Using ROE Solver[R]. Kolkata: St.Xavier’s College & Bose Institute, 2021.
    [11] Chen S, Sun Q, Klioutchniko V I, et al. Numerical study of chemically reacting flow in a shock tube using a high-order point-implicit scheme[J]. Computers & Fluids, 2019, 184: 107-118.
    [12] Qiu R F, Che H H, Zhou T, et al. Lattice boltzmann simulation for unsteady shock wave/boundary layer interaction in shock tube[J]. Computers & Mathematics with Applications, 2020, 80(10): 2241-2257.
    [13] Zhou G Z, Xu K, Liu F. Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube[J]. Physics of Fluids, 2018, 30(1): 016102. doi: 10.1063/1.4998300
    [14] 陈海昕, 李凤蔚, 鄂秦, 等. 复杂流场数值模拟中的网格生成[J]. 西北工业大学学报, 2000, 18(2): 194-197. doi: 10.3969/j.issn.1000-2758.2000.02.006

    Chen Haixin, Li Fengwei, E Qin, et al. A method for grid generation in numerical flow analysis of complex configurations[J]. Journal of Northwestern Polytechnical University, 2000, 18(2): 194-197. doi: 10.3969/j.issn.1000-2758.2000.02.006
    [15] 伊进宝, 赵卫兵, 师海潮, 等. 鱼雷涡轮机斜切喷管内流场数值模拟[J]. 水下无人系统学报, 2010, 78(3): 223-227.

    Yi Jinbao, Zhao Weibing, Shi Haichao, et al. Numerical simulation of flow field in oblique cut nozzle of torpedo turbine[J]. Journal of Underwater Unmanned Systems, 2010, 78(3): 223-227.
    [16] Jacobs P A, Gollan R J, Denman A J, et al. Eilmer’s theory book: Basic models for gas dynamics and thermochemistry[R]. Brisbane, Australia: The University of Queensland, 2010.
    [17] Jacobs P A. Shock Tube Modelling with L1d[R]. Brisbane, Australia: The University of Queensland, 1998.
    [18] Ibrahim M, Hashim W. Oscillating flow in channels with a sudden change in cross section[J]. Computers & Fluids, 1994, 23(1): 211-224.
    [19] Restivo A, Whitelaw J H. Turbulence characteristics of the flow downstream of a symmetric, plane sudden expansion[J]. Journal of Fluids Engineering, 1978, 100(3): 308-310. doi: 10.1115/1.3448671
    [20] Devenport W J, Sutton E P. An experimental study of two flows through an axisymmetric sudden expansion[J]. Experiments in Fluids, 1993, 14(6): 423-432. doi: 10.1007/BF00190197
    [21] Kiverin A, Yakovenko I. On the mechanism of flow evolution in shock-tube experiments[J]. Physics Letters A, 2018, 382(5): 309-314. doi: 10.1016/j.physleta.2017.11.033
    [22] Nativel D, Cooper S P, Lipkowicz T, et al. Impact of shock-tube facility-dependent effects on incident-and reflected-shock conditions over a wide range of pressures and mach numbers[J]. Combustion and Flame, 2020, 217: 200-211. doi: 10.1016/j.combustflame.2020.03.023
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  12
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-21
  • 修回日期:  2022-07-09
  • 网络出版日期:  2023-09-13

目录

    /

    返回文章
    返回
    服务号
    订阅号