• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于强化学习的无人水面艇能耗最优路径规划算法

李佩娟 颜庭武 杨书涛 李睿 杜俊峰 钱福福 刘义亭

李佩娟, 颜庭武, 杨书涛, 等. 基于强化学习的无人水面艇能耗最优路径规划算法[J]. 水下无人系统学报, 2023, 31(2): 237-243 doi: 10.11993/j.issn.2096-3920.202203002
引用本文: 李佩娟, 颜庭武, 杨书涛, 等. 基于强化学习的无人水面艇能耗最优路径规划算法[J]. 水下无人系统学报, 2023, 31(2): 237-243 doi: 10.11993/j.issn.2096-3920.202203002
LI Peijuan, YAN Tingwu, YANG Shutao, LI Rui, DU Junfeng, QIAN Fufu, LIU Yiting. Energy-optimal Path Planning Algorithm for Unmanned Surface Vessel Based on Reinforcement Learning[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 237-243. doi: 10.11993/j.issn.2096-3920.202203002
Citation: LI Peijuan, YAN Tingwu, YANG Shutao, LI Rui, DU Junfeng, QIAN Fufu, LIU Yiting. Energy-optimal Path Planning Algorithm for Unmanned Surface Vessel Based on Reinforcement Learning[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 237-243. doi: 10.11993/j.issn.2096-3920.202203002

基于强化学习的无人水面艇能耗最优路径规划算法

doi: 10.11993/j.issn.2096-3920.202203002
详细信息
    作者简介:

    李佩娟(1982-), 女, 博士, 副教授, 主要研究方向为水下航行器组合导航技术

  • 中图分类号: U674.941; TP24

Energy-optimal Path Planning Algorithm for Unmanned Surface Vessel Based on Reinforcement Learning

  • 摘要: 针对无人水面艇路径规划时存在洋流、障碍物等外部干扰的问题, 提出一种改进的基于强化学习的无人水面艇能耗最优路径规划算法。首先, 建立多个随机涡流组成的二维洋流模型和无人水面艇平面运动学模型; 其次, 依据洋流和无人水面艇相对速度关系, 计算路径点是否可达; 然后, 利用改进的奖励函数、动作集和状态集求解全局最优路径, 并采用B样条法进行平滑; 最后, 在2种典型环境下进行了数值仿真。仿真结果表明,该算法可规划出一条能耗最优且平滑的路径, 验证了算法的有效性和最优性。

     

  • 图  1  无人水面艇和洋流的速度矢量示意图

    Figure  1.  Velocity vector schematic of USV and ocean current

    图  2  强化学习基本框架

    Figure  2.  Basic framework of reinforcement learning

    图  3  无人水面艇舵角的离散动作

    Figure  3.  Discrete action of the rudder angle of USV

    图  4  无人水面艇航向角编号

    Figure  4.  Numbers of USV heading angles

    图  5  洋流影响下无人水面艇航向角取值范围

    Figure  5.  Range of the heading angle of USV under the influence of ocean current

    图  6  基于能耗最优的路径规划算法流程图

    Figure  6.  Flow chart of energy-optimal path planning algorithm

    图  7  洋流场矢量图

    Figure  7.  Ocean current vector map

    图  8  基于洋流约束的无人水面艇仿真路径

    Figure  8.  Simulation paths of USV based on ocean current constraints

    图  9  基于洋流和障碍物约束的无人水面艇仿真路径

    Figure  9.  Simulation paths of USV based on obstacles and ocean current constraints

    表  1  仿真结果对比

    Table  1.   Comparison of simulation results

    环境算法时间/s大转向角个数路径长度/m
    情况1直接路径2240378
    粒子群算法2073453
    传统算法2283583
    文中算法1830454
    情况2直接路径2240378
    粒子群算法2171428
    传统算法2427588
    文中算法1910451
    下载: 导出CSV
  • [1] Fan X J, Guo J Y, Liu H, et al. Improved artificial potential field method applied for AUV path planning[J]. Mathematical Problems in Engineering, 2020(1): 1-21.
    [2] Liu C, Mao Q, Chu X, et al. An improved A-star algorithm considering water current, traffic separation and berthing for vessel path planning[J]. Applied Scineces Basel, 2019, 9(6): 1057. doi: 10.3390/app9061057
    [3] Wang L, Pang S. Chemical plume tracing using an AUV based on POMDP source mapping and A-star path planning[C]//2019 MTS/IEEE Oceans Conference. Parc Chanotl, Marseille, France: IEEE, 2019.
    [4] 高博, 徐德民, 张福斌, 等. 海流建模及其在路径规划中的应用[J]. 系统仿真学报, 2010, 22(4): 957-961. doi: 10.16182/j.cnki.joss.2010.04.016

    Gao Bo, Xu Deming, Zhang Fubin, et al. Method of designing optimal smooth way for vehicle[J]. Journal of System Simulation, 2010, 22(4): 957-961. doi: 10.16182/j.cnki.joss.2010.04.016
    [5] 向金林, 王鸿东, 欧阳子路, 等. 基于改进双向RRT的无人艇局部路径规划算法研究[J]. 中国造船, 2020, 61(1): 157-166.

    Xiang Jinlin, Wang Hongdong, Ouyang Zilu, et al. Algorithm of local path planning for unmanned surface vehicles based on improved Bi-RRT[J]. Shipbuilding of China, 2020, 61(1): 157-166.
    [6] Alvarez A, Caiti A. A genetic algorithm for autonomous underwater vehicle route planning in ocean environments with complex space-time variability[J]. IFAC Proceedings Volumes, 2001, 34(7): 237-242. doi: 10.1016/S1474-6670(17)35089-9
    [7] Alvarez A, Caiti A, Onken R. Evolutionary path planning for autonomous underwater vehicles in a variable ocean[J]. IEEE Journal of Oceanic Engineering, 2004, 29(2): 418-429. doi: 10.1109/JOE.2004.827837
    [8] Zeng Z, Sammut K, Lian L, et al. A comparison of optimization techniques for AUV path planning in environments with ocean currents[J]. Robotics and Autonomous Systems, 2016(82): 61-72.
    [9] Zeng Z, Lammas A, Sammut K, et al. Shell space decomposition based path planning for AUVs operating in a variable environment[J]. Ocean Engineering, 2014, 91: 181-195. doi: 10.1016/j.oceaneng.2014.09.001
    [10] 马焱, 肖玉杰, 陈轶, 等. 基于改进烟花-蚁群算法的海流环境下水下无人水面艇的避障路径规划[J]. 导航与控制, 2019, 18(1): 51-59. doi: 10.3969/j.issn.1674-5558.2019.01.007

    Ma Yan, Xiao Yujie, Chen Yi, et al. Obstacle avoidance path planning of unmanned underwater vehicle in ocean current environment based on improved fireworks-ant colony algorithm[J]. Navigation and Control, 2019, 18(1): 51-59. doi: 10.3969/j.issn.1674-5558.2019.01.007
    [11] Chen C, Chen X Q, Ma F, et al. A knowledge-free path planning approach for smart ships based on reinforcement learning[J]. Ocean Engineering, 2019, 189: 106299. doi: 10.1016/j.oceaneng.2019.106299
    [12] Guo S, Zhang X, Zheng Y, et al. An autonomous path planning model for unmanned ships based on deep reinforcement learning[J]. Sensors, 2020, 20(2): 426. doi: 10.3390/s20020426
    [13] Woo J, Kim N. Collision avoidance for an unmanned surface vehicle using deep reinforcement learning[J]. Ocean Engineering, 2020, 199(1): 1-16.
    [14] Garau B, Alvarez A, Oliver G. AUV navigation through turbulent ocean environments supported by onboard H-ADCP[C]//2006 IEEE International conference on robotics and automation. Orlando, FL, USA: IEEE, 2006.
    [15] Li X, Sun Z, Cao D, et al. Real-time trajectory planning for autonomous urban driving: framework, algorithms, and verifications[J]. IEEE-ASME Transactions on Mechatronics, 2016, 21(2): 740-753. doi: 10.1109/TMECH.2015.2493980
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  105
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 修回日期:  2022-04-18
  • 录用日期:  2022-05-11
  • 网络出版日期:  2023-02-21

目录

    /

    返回文章
    返回
    服务号
    订阅号