• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拦截弹高海况适应性评估方法

邵宗战 熊勇 戴文留

邵宗战, 熊勇, 戴文留. 拦截弹高海况适应性评估方法[J]. 水下无人系统学报, 2022, 30(4): 535-542 doi: 10.11993/j.issn.2096-3920.202202008
引用本文: 邵宗战, 熊勇, 戴文留. 拦截弹高海况适应性评估方法[J]. 水下无人系统学报, 2022, 30(4): 535-542 doi: 10.11993/j.issn.2096-3920.202202008
SHAO Zong-zhan, XIONG Yong, DAI Wen-liu. Method of Adaptability Assessment of an Intercept Missile in Challenging Marine Conditions[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 535-542. doi: 10.11993/j.issn.2096-3920.202202008
Citation: SHAO Zong-zhan, XIONG Yong, DAI Wen-liu. Method of Adaptability Assessment of an Intercept Missile in Challenging Marine Conditions[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 535-542. doi: 10.11993/j.issn.2096-3920.202202008

拦截弹高海况适应性评估方法

doi: 10.11993/j.issn.2096-3920.202202008
详细信息
    作者简介:

    邵宗战(1972-), 男, 高级工程师, 主要研究方向为深弹及武器系统试验

  • 中图分类号: TJ412.7; U674.71

Method of Adaptability Assessment of an Intercept Missile in Challenging Marine Conditions

  • 摘要: 拦截弹装备于水面舰艇, 其主要使命任务是对来袭的反舰鱼雷实施硬杀伤拦截。工作时, 拦截弹收到系统点火信号后, 发动机点火, 弹体出管飞行; 弹体入水后, 声引信完成分离, 悬浮装置点火, 弹体分离, 气囊充气上浮; 待弹体稳定悬浮后, 开始正常工作。因此, 拦截弹发射飞行及入水分离是否正常是影响其作战效能的关键因素。但在高海况下, 对这些因素的评估存在试验组织实施难、试验产品回收难以及试验数据测量难等一系列实际问题。文中针对该装备的技术特性、使用环境, 提出了拦截弹作战使用需满足的性能要求, 并采用试验验证与仿真计算相结合的综合评估方法, 针对拦截弹的弹道攻角、入水过载和连接件受力3个方面的性能能否满足规定的高海况使用要求进行了研究。结果表明, 上述3方面性能均满足规定的高海况使用要求, 为进一步给出该拦截弹高海况适应性状态鉴定结论提供了技术支撑。

     

  • 图  1  评估方法框图

    Figure  1.  Block diagram of the assessment method

    图  2  正顺风初始条件弹道攻角幅值曲线

    Figure  2.  Amplitude curves of angle of attack under initial conditions with positive tailwind

    图  3  正逆风初始条件弹道攻角幅值曲线

    Figure  3.  Amplitude curves of angle of attack under initial conditions with positive headwind

    图  4  正横风初始条件弹道攻角幅值曲线

    Figure  4.  Amplitude curves of angle of attack under initial conditions with positive crosswind

    图  5  最大射程击水阶段有限元仿真结果

    Figure  5.  Finite element simulation results at maximum-range water hitting stage

    图  6  最大射程击水阶段过载曲线

    Figure  6.  Overload curves at maximum-range water hitting stage

    图  7  最小射程击水阶段有限元仿真结果

    Figure  7.  Finite element simulation results at minimum-range water hitting stage

    图  8  最小射程击水阶段过载曲线

    Figure  8.  Overload curves at minimum-range water hitting stage

    图  9  最大射程击水阶段后的降速过载曲线

    Figure  9.  Deceleration overload curves after maximum-range water hitting stage

    图  10  最小射程击水阶段后的降速过载曲线

    Figure  10.  Deceleration overload curves after minimum-range water hitting stage

    图  11  $ {\boldsymbol{\varphi = 0}} $时连接件受力图

    Figure  11.  Force diagram of connector at ${\boldsymbol{ \varphi = 0}} $

    图  12  ${\boldsymbol{ \varphi ={\text{π}}/2 }}$时连接件受力图

    Figure  12.  Force diagram of connector at ${\boldsymbol{ \varphi ={\text{π}}/2}} $

    图  13  ${\boldsymbol{ \varphi ={\text{π}} }}$时连接件受力图

    Figure  13.  Force diagram of connector at ${\boldsymbol{ \varphi = {\text{π}}}} $

    图  14  $ {\boldsymbol{\varphi = 7{\text{π}} /4}} $时连接件受力图

    Figure  14.  Force diagram of connector at $ {\boldsymbol{\varphi = 7{\text{π}}/4}} $

    表  1  拦截弹气动稳定性计算结果

    Table  1.   Results of aerodynamic stability calculation for the intercept missile

    序号弹道攻角/(°)稳定裕度
    120.250 20
    240.221 00
    360.205 67
    480.197 60
    5100.187 53
    6150.170 60
    7200.167 47
    8250.169 13
    9300.162 20
    10350.146 93
    11400.127 80
    12450.122 53
    下载: 导出CSV

    表  2  拦截弹6级海况最大风速条件下弹道入水参数计算结果

    Table  2.   Calculation results of ballistic water entry parameters under the condition of sea state level 6 and the maximum wind speed

    入射角/(°) 入水参数标准
    条件
    正顺风正逆风正横风
    45速度/(m·s−1)159.5162.1155.3158.5
    弹道倾角/(°) 47.0046.1048.4047.00
    攻角/(°) 0.173.701.803.50
    12速度/(m·s−1)164.0165.8161.9163.3
    弹道倾角/(°) 12.2012.1012.2012.10
    攻角/(°) 0.502.101.307.40
    下载: 导出CSV
  • [1] 任磊, 贾跃, 李文哲. 悬浮式拦截弹作战仿真平台的设计与实现[J]. 电子质量, 2017(11): 43-46. doi: 10.3969/j.issn.1003-0107.2017.11.011

    Ren Lei, Jia Yue, Li Wen-zhe. The Design and Realization of the Suspended Depth-charge Combat Simulation Platform[J]. Electronics Quality, 2017(11): 43-46. doi: 10.3969/j.issn.1003-0107.2017.11.011
    [2] 刘朝辉, 赵峰, 槐万景, 等. 基于仿真的深弹拦截鱼雷作战效能评估分析方法[J]. 火力与指挥控制, 2016, 41(1): 41-44. doi: 10.3969/j.issn.1002-0640.2016.01.010

    Liu Chao-hui, Zhao Feng, Huai Wan-jing, et al. Method to Evaluate Operational Effectiveness of Hovering Depth Charge Intercepting Torpedo Based on Simulation[J]. Fire Control & Command Control, 2016, 41(1): 41-44. doi: 10.3969/j.issn.1002-0640.2016.01.010
    [3] 李翔, 毕世华, 陈阵. 舰船摇摆下舰载火箭弹初始扰动可能域研究[J]. 舰船科学技术, 2011, 33(12): 89-92. doi: 10.3404/j.issn.1672-7649.2011.12.021

    Li Xiang, Bi Shi-hua, Chen Zhen. Research on Presumable Range of Initial Disturbances of Ship-borne Rocket under Ship Swaying Motion[J]. Ship Science and Technology, 2011, 33(12): 89-92. doi: 10.3404/j.issn.1672-7649.2011.12.021
    [4] 任磊, 贾跃, 施帆. 基于相对运动考虑海流影响的拦截弹布放方法[J]. 数字海洋与水下攻防, 2019, 2(2): 66-70.

    Ren Lei, Jia Yue, Shi Fan. Laying Method of Interceptor Considering Ocean Current Influence Based on Relative Motion[J]. Digital Ocean & Underwater Warfare, 2019, 2(2): 66-70.
    [5] 孙为康, 史军, 邵文熙, 等. 基于多输入海况条件下的船舶运动模型分析[J]. 价值工程, 2019(36): 220-223. doi: 10.14018/j.cnki.cn13-1085/n.2019.36.094

    Sun Wei-kang, Shi Jun, Shao Wen-xi, et al. Analysis of Ship Motion Model Based on Multiple Input Sea Conditions[J]. Value Engineering, 2019(36): 220-223. doi: 10.14018/j.cnki.cn13-1085/n.2019.36.094
    [6] 赵峰, 胡伟文, 郭云伟, 等. 悬浮式深弹的射弹散布模型及其精度分析[J]. 火力与指挥控制, 2014, 39(1): 33-36.

    Zhao Feng, Hu Wei-wen, Guo Yun-wei, et al. Impact Area Distribution Model and Accuracy Analysis of Hovering Depth Charge[J]. Fire Control & Command Control, 2014, 39(1): 33-36.
    [7] 赵峰, 胡伟文, 朱朝峰, 等. 悬浮式深弹拦截鱼雷作战效能的因素分析[J]. 海军工程大学学报, 2013, 25(6): 18-23.

    Zhao Feng, Hu Wei-wen, Zhu Chao-feng, et al. Analysis of Factors Affecting Operational Effectiveness of Hovering Depth Charge in Intercepting Torpedo[J]. Journal of Naval University of Engineering, 2013, 25(6): 18-23.
    [8] 陈俊锋, 朱军, 黄昆仑. 规则波浪中舰船不规则摇荡运动计算分析[J]. 舰船科学技术, 2011, 33(1): 41-44. doi: 10.3404/j.issn.1672-7649.2011.01.007

    Chen Jun-feng, Zhu Jun, Huang Kun-lun. Study on the Irregular Oscillatory Motions for a Ship in Regular Waves[J]. Ship Science and Technology, 2011, 33(1): 41-44. doi: 10.3404/j.issn.1672-7649.2011.01.007
    [9] 韩子鹏. 弹箭外弹道学[M]. 北京: 国防工业出版社, 2012.
    [10] 孙慧玲, 胡伟文, 宋业新. 悬浮式深水炸弹综合防御鱼雷作战仿真系统确认方法[J]. 兵工学报, 2020, 41(12): 2523-2529. doi: 10.3969/j.issn.1000-1093.2020.12.018

    Sun Hui-ling, Hu Wei-wen, Song Ye-xin. Accreditation Method for Integrated Anti-torpedo Combat Simulation System of Suspended Depth Charge[J]. Acta Armamentarii, 2020, 41(12): 2523-2529. doi: 10.3969/j.issn.1000-1093.2020.12.018
    [11] 姚奉亮, 贾跃, 丁贝. 悬浮式深弹拦截不确定型鱼雷作战模型研究[J]. 鱼雷技术, 2011, 19(1): 63-67.

    Yao Feng-liang, Jia Yue, Ding Bei. Operational Model for Intercepting Uncertain Type of Torpedo with Hovering Depth Charge[J]. Torpedo Technology, 2011, 19(1): 63-67.
    [12] Meng J, Wang Y J, Cai L, et al. Research on the Combination of Underwater Acoustic Countermeasure Equipment against Torpedo[C]//International Conference on Mechanical Engineering and Electrical Systems. Paris: EDP Sciences, 2016.
    [13] 吴海平, 袁志勇, 张翼超. 悬浮式拦截弹拦截鱼雷概率分析[J]. 船电技术, 2009, 29(4): 26-29. doi: 10.3969/j.issn.1003-4862.2009.04.007

    Wu Hai-ping, Yuan Zhi-yong, Zhang Yi-chao. The Probability of Intercepting Torpedo Using Suspended Depth Charge[J]. Marine Electric Electronic Engineering, 2009, 29(4): 26-29. doi: 10.3969/j.issn.1003-4862.2009.04.007
    [14] 房毅, 田恒斗, 侯宝娥. 悬浮式深弹反鱼雷武器仿真试验系统设计[J]. 兵器装备工程学报, 2016, 37(6): 79-82. doi: 10.11809/scbgxb2016.06.019

    Fang Yi, Tian Heng-dou, Hou Bao-e. Simulation Test System Design of Hovering Depth Charge Anti-Torpedo Weapon[J]. Journal of Ordnance Equipment Engineering, 2016, 37(6): 79-82. doi: 10.11809/scbgxb2016.06.019
    [15] 任磊, 贾跃, 李文哲. 舰载软硬防雷武器综合对抗智能鱼雷方案研究[J]. 兵工学报, 2015, 36(12): 2336-2341. doi: 10.3969/j.issn.1000-1093.2015.12.017

    Ren Lei, Jia Yue, Li Wen-zhe. Research on Comprehensive Scheme of Shipboard Hard and Soft Torpedo Defense Weapons against Intelligent Torpedoes[J]. Acta Armamentarii, 2015, 36(12): 2336-2341. doi: 10.3969/j.issn.1000-1093.2015.12.017
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  14
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-24
  • 修回日期:  2022-04-14
  • 网络出版日期:  2022-09-06

目录

    /

    返回文章
    返回
    服务号
    订阅号