• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多次水下爆炸对船体梁累积毁伤试验研究

唐正鹏 李翔宇

唐正鹏, 李翔宇. 多次水下爆炸对船体梁累积毁伤试验研究[J]. 水下无人系统学报, 2022, 30(3): 364-370 doi: 10.11993/j.issn.2096-3920.2022.03.012
引用本文: 唐正鹏, 李翔宇. 多次水下爆炸对船体梁累积毁伤试验研究[J]. 水下无人系统学报, 2022, 30(3): 364-370 doi: 10.11993/j.issn.2096-3920.2022.03.012
TANG Zheng-peng, LI Xiang-yu. Experiments on Cumulative Damage to Hull Girders Subjected to Multiple Underwater Explosions[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 364-370. doi: 10.11993/j.issn.2096-3920.2022.03.012
Citation: TANG Zheng-peng, LI Xiang-yu. Experiments on Cumulative Damage to Hull Girders Subjected to Multiple Underwater Explosions[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 364-370. doi: 10.11993/j.issn.2096-3920.2022.03.012

多次水下爆炸对船体梁累积毁伤试验研究

doi: 10.11993/j.issn.2096-3920.2022.03.012
基金项目: 国家自然科学基金项目资助(12172380).
详细信息
    作者简介:

    唐正鹏(1993-), 男, 在读硕士, 主要研究方向为爆炸力学

  • 中图分类号: TJ410; U661.7

Experiments on Cumulative Damage to Hull Girders Subjected to Multiple Underwater Explosions

  • 摘要: 针对船体梁累积毁伤问题, 开展了多次水下爆炸对船体梁的累积毁伤试验, 考察了爆炸距离、爆炸次数等参数对累积毁伤的影响规律, 基于船体梁挠跨比建立了毁伤等级模型。结果表明: 在中远场水下爆炸加载作用下, 船体梁不发生塑性变形; 在近场作用下, 船体梁会产生中部凹陷的局部塑性变形和整体中拱塑性弯曲变形; 随着爆炸距离的减小, 船体梁整体挠度值增大; 在相同工况下船体梁的累积挠度值与爆炸加载次数近似呈线性关系。

     

  • 图  1  船体梁结构图

    Figure  1.  Structural diagram of hull girder

    图  2  船体梁水中布置图

    Figure  2.  Underwater layout of hull girder

    图  3  RDX药柱安装布置图

    Figure  3.  Installation layout of RDX grainl

    图  4  试验装置布置图

    Figure  4.  Layout of test device

    图  5  压力传感器测点位置

    Figure  5.  Gauss points of pressure sensor

    图  6  不同测点自由场峰值压力时程曲线

    Figure  6.  Time history curves of free field peak pressure at different gauss points

    图  7  水中气泡脉动过程

    Figure  7.  Bubble pulsation process in water

    图  8  船体梁动态响应过程

    Figure  8.  Dynamic response of hull girder

    图  9  爆距200 mm时船体梁底部变形结果

    Figure  9.  Bottom deformation of hull girder at 200 mm

    图  10  爆距100 mm时船体梁底部变形结果

    Figure  10.  Bottom deformation of hull girder at 100 mm

    图  11  受损船体梁静置水中照片

    Figure  11.  Photo of damaged hull girder standing in water

    图  12  1号船体梁整体变形对比图

    Figure  12.  Comparison of overall deformation of No. 1 hull girder

    图  13  船体梁局部变形

    Figure  13.  Partial deformation of hull girder

    图  14  船体梁变形测量点位置

    Figure  14.  Position of deformation measuring points of hull girder

    图  15  船体梁底板各位置挠度值以及累积变化图

    Figure  15.  Deflection value and cumulative change diagram of hull girder bottom plate at each position

    表  1  2种型号船体梁的尺寸规格

    Table  1.   Dimensions of two types of hull girder

    型号材料
    /mm
    宽/mm高/mm板厚/mm横板
    数量
    145#50065.0331.06
    245#75097.5501.56
    下载: 导出CSV

    表  2  试验工况

    Table  2.   Test conditions

    型号W/gH/mmQ/(g1/3·m1) n
    12.953004.81
    2.962007.21
    3.0010014.41
    3.0010014.45
    23.0010014.45
    下载: 导出CSV

    表  3  水中冲击波参数

    Table  3.   Parameters of shock wave in water

    W/gD/mPm/MPaT/ms
    30.4914.5060.306
    30.5412.9180.339
    30.719.5040.449
    30.768.8440.485
    下载: 导出CSV

    表  4  船体梁毁伤等级程度划分

    Table  4.   Classification of damage degree of hull girder

    等级挠跨比局部变形整体毁伤程度
    0~0.09底板塑性变形呈类球冠形轻度毁伤
    0.09~0.20明显的塑性锥顶平台中度毁伤
    0.20~0.30中部舱段形成塑性铰重度毁伤
    >0.30边界发生皱褶屈曲严重毁伤
    下载: 导出CSV

    表  5  船体梁变形测量值

    Table  5.   Measured values of hull girder deformation

    型号nL/mmα/radd1/mmd2/mmd3/mmd4/mmd5/mmΔ/mm
    117500.0665.710.415.619.733.613.9
    27500.16211.924.338.548.370.422.1
    37500.23317.835.254.769.497.428.0
    47500.35025.151.480.0102.9138.635.7
    57500.45032.464.5101.3130.6175.144.5
    211 0000.0585.511.517.523.140.817.7
    21 0000.12111.823.436.348.173.625.5
    31 0000.17817.135.353.770.9102.631.7
    41 0000.25124.248.972.199.4137.337.9
    51 0000.29428.257.687.1116.2156.240.0
    下载: 导出CSV
  • [1] 吴有生, 彭兴宁, 赵本立. 爆炸载荷作用下舰船板架的变形与破损[J]. 中国造船, 1995, 36(4): 55-61.

    Wu You-sheng, Peng Xing-ning, Zhao Ben-li. Plastic Deformation and Damage of Naval Panels Subjected to Explosion Loading[J]. Shipbuilding of China, 1995, 36(4): 55-61.
    [2] Zamyshlyaev B V, Yakovlev Y S. Dynamic Loads in Underwater Explosion: AD757183[R]. Washington D C: Naval Intelligence Support Center, 1973.
    [3] 杨文山. 水下接触爆炸舰船局部毁伤及防护机理[D]. 哈尔滨: 哈尔滨工程大学, 2011.
    [4] 张斐, 张春辉, 张磊, 等. 多次水下爆炸作用下钢板动态响应数值模拟[J]. 中国舰船研究, 2019, 14(6): 122-129.

    Zhang Fei, Zhang Chun-hui, Zhang Lei, et al. Numerical Simulation of Dynamic Response of Steel Plate Subjected to Multiple Underwater Explosions[J]. Chinese Journal of Ship Research, 2019, 14(6): 122-129.
    [5] 李海涛, 朱石坚, 刁爱民, 等. 水下爆炸作用下对称结构船体梁整体损伤特性研究[J]. 船舶力学, 2017, 8(8): 983-910. doi: 10.3969/j.issn.1007-7294.2017.08.007

    Li Hai-tao, Zhu Shi-jian, Diao Ai-min, et al. Experimental Investigation on the Damage Modes of Axisymmetrical Ship-like Beam Subjected to Underwater Explosions in Near-Field[J]. Journal of Ship Mechanics, 2017, 8(8): 983-910. doi: 10.3969/j.issn.1007-7294.2017.08.007
    [6] Shin H, Seo B, Cho S R. Experimental Investigation of Slamming Impact Acted on Flat Bottom Bodies and Cumulative Damage[J]. International Journal of Naval Architecture & Ocean Engineering, 2017, 10(3): 294-306.
    [7] Xu H, Guedes S. Experimental Study on the Dynamic Behavior of Beams under Repeated Impacts[J]. International Journal of Impact Engineering, 2020, 147: 103724.
    [8] Zhou Y, Chong J, Yuan L, et al. Experimental Studies on the Deformation and Damage of Steel Cylindrical Shells Subjected to Double-Explosion Loadings[J]. Thin-Walled Structures, 2018, 127: 469-482. doi: 10.1016/j.tws.2018.02.019
    [9] Yuen S C K, Butler A, Bornstein H, et al. The Influence of Orientation of Blast Loading on Quadrangular Plates[J]. Thin-Walled Structures, 2018, 131(10): 827-837.
    [10] Shamami Z M, Babaei H, Mostofi T M, et al. Structural Response of Monolithic and Multi-Layered Circular Metallic Plates under Repeated Uniformly Distributed Impulsive Loading: An Experimental Study[J]. Thin-Walled Structures, 2020, 157(10): 107024.
    [11] Cheng L, Ji C, Gao F, et al. Deformation and Damage of Liquid-filled Cylindrical Shell Composite Structures Subjected to Repeated Explosion Loads: Experimental and Numerical Study[J]. Composite Structures, 2019, 220(7): 386-401.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  18
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-04-20
  • 录用日期:  2022-04-28
  • 网络出版日期:  2022-06-27

目录

    /

    返回文章
    返回
    服务号
    订阅号