• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面覆水对浅埋爆炸冲量传递的影响

高文博 赵振宇 任建伟 卢天健

高文博, 赵振宇, 任建伟, 卢天健. 表面覆水对浅埋爆炸冲量传递的影响[J]. 水下无人系统学报, 2022, 30(3): 292-299. doi: 10.11993/j.issn.2096-3920.2022.03.003
引用本文: 高文博, 赵振宇, 任建伟, 卢天健. 表面覆水对浅埋爆炸冲量传递的影响[J]. 水下无人系统学报, 2022, 30(3): 292-299. doi: 10.11993/j.issn.2096-3920.2022.03.003
GAO Wen-bo, ZHAO Zhen-yu, REN Jian-wei, LU Tian-jian. Effects of Water Covering on Impulse Transfer in Shallow Buried Explosions[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 292-299. doi: 10.11993/j.issn.2096-3920.2022.03.003
Citation: GAO Wen-bo, ZHAO Zhen-yu, REN Jian-wei, LU Tian-jian. Effects of Water Covering on Impulse Transfer in Shallow Buried Explosions[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 292-299. doi: 10.11993/j.issn.2096-3920.2022.03.003

表面覆水对浅埋爆炸冲量传递的影响

doi: 10.11993/j.issn.2096-3920.2022.03.003
基金项目: 

国家自然科学基金(11972185,12002156)、中国博士后科学基金(2020M671473).

详细信息
    作者简介:

    高文博(1999-),男,在读硕士,主要研究方向为强动载荷下轻质材料与结构力学行为.

  • 中图分类号: TJ630.1;TB71.2

Effects of Water Covering on Impulse Transfer in Shallow Buried Explosions

  • 摘要: 表面覆水浅埋爆炸是装甲车辆在滩涂地区作战的主要威胁之一。由于同时具有水层和砂层的影响,表面覆水浅埋爆炸的冲量传递特性与传统浅埋爆炸差异较大。为精细表征表面覆水对浅埋炸药爆炸冲量传递的影响, 文章借助 AUTODYN 有限元软件, 采用流固耦合算法对表面覆水的浅埋爆炸过程进行数值仿真。研究表明, 流固耦合方法能够有效仿真表面覆水工况下浅埋爆炸; 表面覆水增强了浅埋爆炸中传递给目标的冲量, 且冲量随水层厚度的增加逐渐增大; 同时, 炸药底部的垫层厚度对冲量传递也有一定的影响。文中结果可为滩涂地区用装甲车辆高性能防护结构设计提供有效的研究手段。

     

  • [1] 赵振宇,任健伟,金峰,等.浅埋炸药爆炸动力学研究进展[J].应用力学学报, 2022, 39(1):1-11.

    Zhao Zhen-yu, Ren Jian-wei, Jin Feng, et al. Process of Explosion Dynamics of Shallow-buried Explosive[J]. Chinese Journal of Applied Mechanics, 2022, 39(1):1-11.
    [2] 钱七虎.岩石爆炸动力学的若干进展[J].岩石力学与工程学报, 2009, 28(10):1945-1968.

    Qian Qi-hu. Some Advances in Rock Blasting Dynamics[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10):1945-1968.
    [3] Bangash M. Shock, Impact and Explosion:Structural Analysis and Design[M]. Berlin:Springer, 2009.
    [4] Ramasamy A, Hill A M, Masouros S D, et al. Evaluating the Effect of Vehicle Modification in Reducing Injuries from Landmine Blasts. An Analysis of 2212 Incidents and Its Application for Humanitarian Purposes[J]. Accident Analysis and Prevention, 2011, 43(5):1878-1886.
    [5] Callaway D W, Burstein J L. Operational and Medical Management of Explosive and Blast Incidents[M]. Berlin:Springer, 2020.
    [6] Genson K W. Vehicle Shaping for Mine Blast Damage Reduction[D]. College Park:University of Maryland, 2006.
    [7] Clake S D, Fay S D, Warren J A, et al. Predicting the Role of Geotechnical Parameters on the Output from Shallow Buried Explosives[J]. International Journal of Impact Engineering, 2017, 102:117-128.
    [8] Rigby S E, Fay S D, Clarke S D, et al. Measuring Spatial Pressure Distribution from Explosives Buried in Dry Leighton Buzzard Sand[J]. International Journal of Impact Engineering, 2016, 96:89-104.
    [9] Denefeld V, Heider N, Holzwarth A. Measurement of the Spatial Specific Impulse Distribution Due to Buried High Explosive Charge Detonation[J]. Defence Technology, 2017, 13(3):219-227.
    [10] 李晓坤,郭香华,张庆明.浅埋地雷爆炸载荷分布的数值仿真分析[J].兵器装备工程学报, 2020, 41(1):188-192.

    Li Xiao-kun, Guo Xiang-hua, Zhang Qing-ming. Numerical Simulation Analysis on the Distribution of Explosive Loads in Shallow Buried Mines[J]. Journal of Ordnance Equipment Engineering, 2020, 41(1):188-192.
    [11] Fox D M, Lee J S. The Influence of Water, Dry Sand, and Unsaturated Sand Constitutive Behavior on the Blast Response of a Rigid Target[J]. International Journal of Impact Engineering, 2014, 65:163-173.
    [12] Goel A, Uth T, Liu T, et al. Coupled Discrete/continuum Simulations of the Impact of Granular Slugs with Clamped Beams:Stand-off Effects[J]. Mechanics of Materials, 2018, 116:90-103.
    [13] Deshpande V S, Mcmeeking R M, Wadley H, et al. Constitutive Model for Predicting Dynamic Interactions between Soil Ejecta and Structural Panels[J]. Journal of the Mechanics&Physics of Solids, 2009, 57(8):1139-1164.
    [14] Mcshane G J, Deshpande V S, Fleck N A. A Laboratory-scale Buried Charge Simulator[J]. International Journal of Impact Engineering, 2013, 62:210-218.
    [15] Hlady S L. Effect of Soil Parameters on Landmine Blast[C]//18th Military Aspects of Blast and Shock Conference. Bad Reichenhall:Wehrtechnische Dienststelle für Schutzund Sondertechnik, 2004.
    [16] Grujicic M, Pandurangan B, Hariharan A. Comparative Discrete-particle versus Continuum-based Computational Investigation of Soil Response to Impulse Loading[J]. Journal of Materials Engineering and Performance, 2011, 20(9):1520-1535.
    [17] Rajasekar J, Kim T H, Kim H D. Visualization of Shock Wave Propagation due to Underwater Explosion[J]. Journal of Visualization, 2020, 23(5):1-13.
    [18] Jin Z Y, Yin C Y, Chen Y, et al. Dynamics of an Underwater Explosion Bubble Near a Sandwich Structure[J]. Journal of Fluids and Structures, 2019, 86, 247-265.
    [19] 文彦博,胡亮亮,秦健,等.近场水下爆炸气泡脉动及水射流的实验与数值模拟研究[J/OL].爆炸与冲击.[2022-05-06]. http://www.bzycj.cn/article/doi/10.11883/bzycj-2021-0206.
    [20] Feng L J, Wei G T, Yu G C, et al. Underwater Blast Behaviors of Enhanced Lattice Truss Sandwich Panels[J]. International Journal of Mechanical Sciences, 2019, 150, 238-246.
    [21] 张森,韩庚奋,赖西南,等.涉水触雷爆炸伤的特点及机制[J].解放军医学杂志, 2017, 42(10):914-919.

    Zhang Sen, Han Geng-fen, Lai Xi-nan, et al. The Characteristics of Mine Explosion Injury of Wading in Shoal:A Study on an Animal Model[J]. Medical Journal of Chinese People's Liberation Army, 2017, 42(10):914-919.
    [22] 韩庚奋.浅滩地雷爆炸的损伤特点及力学机制研究[D].重庆:第三军医大学, 2014.
    [23] Pickering E G, Yuen S, Nurick G N, et al. The Response of Quadrangular Plates to Buried Charges[J]. International Journal of Impact Engineering, 2012, 49:103-114.
    [24] Bornstein H, Ryan S, Mouritz A. Physical Mechanisms for Near-field Blast Mitigation with Fluid Containers:Effect of Container Geometry[J]. International Journal of Impact Engineering, 2016, 96:61-77.
    [25] Laine L, Sandvik A. Derivation of Mechanical Properties for Sand[C]//4th Asian-Pacific Conference on Shock and Impact Loads on Structures. Singapore:CI-Premier, 2001.
  • 加载中
计量
  • 文章访问数:  110
  • HTML全文浏览量:  1
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-18
  • 网络出版日期:  2022-07-18

目录

    /

    返回文章
    返回
    服务号
    订阅号