• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最小Snap的UUV轨迹优化方法

夏乾鑫 程文鑫 蔡卫军 谢 彬 刘超维

夏乾鑫, 程文鑫, 蔡卫军, 谢 彬, 刘超维. 基于最小Snap的UUV轨迹优化方法[J]. 水下无人系统学报, 2022, 30(1): 54-60. doi: 10.11993/j.issn.2096-3920.2022.01.007
引用本文: 夏乾鑫, 程文鑫, 蔡卫军, 谢 彬, 刘超维. 基于最小Snap的UUV轨迹优化方法[J]. 水下无人系统学报, 2022, 30(1): 54-60. doi: 10.11993/j.issn.2096-3920.2022.01.007
XIA Qian-xin, CHENG Wen-xin, CAI Wei-jun, XIE Bin, LIU Chao-wei. Trajectory Optimization Method for a UUV Based on Minimum Snap[J]. Journal of Unmanned Undersea Systems, 2022, 30(1): 54-60. doi: 10.11993/j.issn.2096-3920.2022.01.007
Citation: XIA Qian-xin, CHENG Wen-xin, CAI Wei-jun, XIE Bin, LIU Chao-wei. Trajectory Optimization Method for a UUV Based on Minimum Snap[J]. Journal of Unmanned Undersea Systems, 2022, 30(1): 54-60. doi: 10.11993/j.issn.2096-3920.2022.01.007

基于最小Snap的UUV轨迹优化方法

doi: 10.11993/j.issn.2096-3920.2022.01.007
详细信息
    作者简介:

    夏乾鑫(1997-), 男, 在读硕士, 主要研究方向为水下航行器总体技术.

  • 中图分类号: TJ630.34 TB115.2

Trajectory Optimization Method for a UUV Based on Minimum Snap

  • 摘要: 为了解决无人水下航行器(UUV)多项式轨迹大幅偏移原直线路径的问题, 保证其能平稳且安全地通过障碍物区域, 提出了一种基于7阶最小Snap的UUV多项式轨迹优化方法。首先在A*算法生成的初始路径基础上, 根据预瞄线原理选取轨迹优化的参考点, 然后拟合2种不同等式约束下的最小Snap轨迹,并且在具有连续约束的轨迹中增加中间平衡点进行偏移优化, 同时设定评估指标来评价优化前后的偏移程度, 最后在构建的障碍物环境中进行仿真试验, 得到在时间一致约束下的3种不同轨迹。仿真结果表明, 0约束下的轨迹虽然具有无碰撞保证, 但是依然为折线轨迹, 具有连续约束的轨迹虽然较平滑, 但存在较大偏移, 优化后的方法可以生成一条平滑且偏移量更小的轨迹。

     

  • [1] 陈强. 水下无人航行器[M]. 北京: 国防工业出版社, 2014.
    [2] 李俊, 徐德民, 宋保维, 等. 自主式水下潜器导航技术发展现状与展望[J]. 中国造船, 2004, 45(3): 73-80.

    Li Jun, Xu De-min, Song Bao-wei, et al. Development and Prospect of AUV Navigation Technology[J]. Shipbuilding of China, 2004, 45(3): 73-80.
    [3] Ju C, Luo Q, Yan X. Path Planning Using an Improved A-star Algorithm[C]//2020 11th International Conference on Prognostics and System Health Management. Jinan, China: IEEE, 2020: 23-26.
    [4] Xu J, Tian Z, He W, et al. A Fast Path Planning Algorithm Fusing PRM and PBi-RRT[C]//2020 11th International Conference on Prognostics and System Health Management. Jinan, China: IEEE, 2020: 503-508.
    [5] Li H. Robotic Path Planning Strategy Based on Improved Artificial Potential Field[C]//2020 International Conference on Artificial Intelligence and Computer Engineering. [S.l.]: ICAICE, 2020: 67-71.
    [6] 贾文涛, 李春涛. 无人机航迹优化与跟踪技术研究[J]. 机械制造与自动化, 2020, 49(6): 156-161.

    Jia Wen-tao, Li Chun-tao. Trajectory Optimization of Unmanned Aerial Vehicle and Research on Its Following Technology[J]. Machine Building & Automation, 2020, 49(6): 156-161.
    [7] Rubí B, Pérez R, Morcego B. A Survey of Path Following Control Strategies for UAVs Focused on Quadrotors[J]. Journal of Intelligent & Robotic Systems, 2019, 98: 241-265.
    [8] 崔乃刚, 郭冬子, 李坤原, 等. 飞行器轨迹优化数值解法综述[J]. 战术导弹技术, 2020(5): 37-51.

    Cui Nai-gang, Guo Dong-zi, Li Kun-yuan, et al. A Survey of Numerical Methods for Aircraft Trajectory Optimization[J]. Tactical Missile Technology, 2020(5): 37-51.
    [9] 王晓明, 宋吉, 郑继新, 等. 改进B样条曲线的机器人轨迹拟合研究[J]. 传感器与微系统, 2021, 40(2): 41-43.

    Wang Xiao-ming, Song Ji, Zheng Ji-xin, et al. Research on Robot Trajectory Fitting Based on Improved B-Spline Curve[J]. Transducer and Microsystem Technologies, 2021, 40(2): 41-43.
    [10] 张新锋, 陈建伟, 左思. 基于贝塞尔曲线的智能商用车换道避障轨迹规划[J]. 科学技术与工程, 2020, 20(29): 12150-12157.

    Zhang Xin-feng, Chen Jian-wei, Zuo Si. Trajectory Planning for Intelligent Commercial Vehicle Obstacle Avoidance Based on Quartic B’ezier Curve[J]. Science Technology and Engineering, 2020, 20(29): 12150-12157.
    [11] Zhang D, Wu F, Li R. Time-optimal and Minimum-jerk Trajectory Planning of 3-DOF PM Spherical Motor[C]// 2017 IEEE International Conference on Mechatronics and Automation. Takamatsu, Japan: IEEE, 2017: 1843-1847.
    [12] Iskander A, Elkassed O, El-Badawy A. Minimum Snap Trajectory Tracking for a Quadrotor UAV using Nonlinear Model Predictive Control[C]//2020 2nd Novel Intelligent and Leading Emerging Sciences Conference. [S.l.]: NILES, 2020: 344-349.
    [13] Shi B, Zhang Y, Mu L, et al. UAV Trajectory Generation Based on Integration of RRT and Minimum Snap Algorithms[C]//2020 Chinese Automation Congress. [S.l.]: CAC, 2020: 4227-4232.
    [14] 黄健萌, 吴宇雄, 林谢昭. 移动机器人的平滑JPS路径规划与轨迹优化方法[J]. 农业机械学报, 2021(2): 21-29.

    Huang Jian-meng, Wu Yu-xiong, Lin Xie-zhao. Smooth JPS Path Planning and Trajectory Optimization Method of Mobile Robot[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021(2): 21-29.
    [15] 唐刚, 侯志鹏, 胡雄. 基于最小化Snap方法的无人机多项式轨迹优化[J]. 计算机应用研究, 2021(5): 1455-1458.

    Tang Gang, Hou Zhi-peng, Hu Xiong. Polynomial Trajectory Optimization of UAV Based on Minimum-snap Method[J]. Application Research of Computers, 2021(5): 1455-1458.
    [16] Charles R, Adam B, Nicholas R. Polynomial Trajectory Planning for Aggressive Quadrotor Flight in Dense Indoor Environments[J]. Robotics Research, 2016, 114: 649-666.
    [17] 于洋, 周佳伟, 冯迎宾, 等. 基于三次B样条曲线的无人车轨迹优化方法研究[J]. 沈阳理工大学学报, 2019, 38(5): 71-75.

    Yu Yang, Zhou Jia-wei, Feng Ying-bin, et al. Research on Trajectory Optimization of Unmanned Vehicle Based on Cubic B-spline Interpolation[J]. Transactions of Shenyang Ligong University, 2019, 38(5): 71-75.
    [18] Takahashi A, Hongo T, Ninomiya Y, et al. LocalPath Planning and Motion Control For AGV In Positioning[C]//IEEE/RSJ International Workshop on Intelligent Robots & Systems 89 the Autonomous Mobile Robots & Its Applications Iros. Tsukuba, Japan: IEEE, 2002.

  • 加载中
计量
  • 文章访问数:  119
  • HTML全文浏览量:  7
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-11
  • 修回日期:  2020-05-20
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回
    服务号
    订阅号