• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下羽流追踪方法研究进展

徐雪寒 孟庆浩 刘科显 井 涛

徐雪寒, 孟庆浩, 刘科显, 井 涛. 水下羽流追踪方法研究进展[J]. 水下无人系统学报, 2022, 30(1): 1-14. doi: 10.11993/j.issn.2096-3920.2022.01.001
引用本文: 徐雪寒, 孟庆浩, 刘科显, 井 涛. 水下羽流追踪方法研究进展[J]. 水下无人系统学报, 2022, 30(1): 1-14. doi: 10.11993/j.issn.2096-3920.2022.01.001
XU Xue-han, MENG Qing-hao, LIU Ke-xian, JING Tao. Progress of Underwater Plume Tracking Methods[J]. Journal of Unmanned Undersea Systems, 2022, 30(1): 1-14. doi: 10.11993/j.issn.2096-3920.2022.01.001
Citation: XU Xue-han, MENG Qing-hao, LIU Ke-xian, JING Tao. Progress of Underwater Plume Tracking Methods[J]. Journal of Unmanned Undersea Systems, 2022, 30(1): 1-14. doi: 10.11993/j.issn.2096-3920.2022.01.001

水下羽流追踪方法研究进展

doi: 10.11993/j.issn.2096-3920.2022.01.001
基金项目:  国家重点研发计划项目资助(2017YFC0306200).
详细信息
    作者简介:

    徐雪寒(1993-), 女, 在读博士, 主要研究方向为水下羽流追踪.

  • 中图分类号: TP29 TP242.6

Progress of Underwater Plume Tracking Methods

  • 摘要: 水下羽流相关研究在海洋资源开采及环境保护等方面有着重要意义。文中围绕水下羽流扩散建模与追踪方法研究, 对现有相关研究成果进行归纳, 从基础、方法以及应用等角度, 总结了水下羽流追踪的研究进展和发展趋势。全文包括4部分: 1) 介绍水下羽流分类和羽流追踪的应用背景; 2) 从扩散模型和仿真平台2个方面梳理羽流扩散建模的研究现状; 3) 将现有水下羽流追踪方法分为反应类方法、概率估计类方法和强化学习类方法3类, 对各类方法的研究进展进行归纳; 4) 讨论了水下羽流追踪研究未来的发展趋势。通过对已有研究成果进行总结, 为水下羽流追踪的进一步研究提供参考。

     

  • [1] Dover C L V. Impacts of Anthropogenic Disturbances at Deep-Sea Hydrothermal Vent Ecosystems: A Review[J]. Marine Environmental Research, 2014, 102: 59-72.
    [2] Jakuba M V. Stochastic Mapping for Chemical Plume Source Localization with Application to Autonomous Hydrothermal Vent Discovery[D]. USA: Massachusetts Institute of Technology, 2007.
    [3] Aryadi Y, Rizal I S, Fadhli M N. Electricity Generation from Hydrothermal vents[C]//IOP Conference Series: Earth and Environmental Science. Indonesia: IOP Publishing, 2016.
    [4] Talukder A R. Review of Submarine Cold Seep Plumbing Systems: Leakage to Seepage and Venting[J]. Terra Nova, 2012, 24(4): 255-272.
    [5] Leifer I. A Synthesis Review of Emissions and Fates for the Coal Oil Point Marine Hydrocarbon Seep Field and California Marine Seepage[J]. Geofluids, 2019(5): 1-48.
    [6] Hwang J, Bose N, Nguyen H D, et al. Acoustic Search and Detection of Oil Plumes Using an Autonomous Underwater Vehicle[J]. Journal of Marine Science and Engineering, 2020, 8(8): 618.
    [7] Wang Q, Yang Z. Industrial Water Pollution, Water Environment Treatment, and Health Risks in China[J]. Environmental Pollution, 2016, 218(11): 358-365.
    [8] Russell R A, Bab-Hadiashar A, Shepherd R L, et al. A Comparison of Reactive Robot Chemotaxis Algorithms[J]. Robotics and Autonomous Systems, 2003, 45(2): 83-97.
    [9] 孟庆浩, 李飞. 主动嗅觉研究现状[J]. 机器人, 2006, 28(1): 89-96.

    Meng Qing-hao, Li Fei. Review of Active Olfaction[J]. Robot, 2006, 28(1): 89-96.
    [10] Kowadlo G, Russell R A. Robot Odor Localization: a Taxonomy and Survey[J]. The International Journal of Robotics Research, 2008, 27(8): 869-894.
    [11] Ishida H, Wada Y, Matsukura H. Chemical Sensing in Robotic Applications: A Review[J]. IEEE Sensors Journal, 2012, 12(11): 3163-3173.
    [12] Chen X X, Huang J. Odor Source Localization Algorithms on Mobile Robots: A Review and Future Outlook[J]. Robotics and Autonomous Systems, 2019, 112: 123-136.
    [13] Jing T, Meng Q H, Ishida H. Recent Progress and Trend of Robot Odor Source Localization[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2021, 16(7): 938-953.
    [14] Ji C, Beegle-Krause C J, Englehardt J D. Formation, Detection, and Modeling of Submerged Oil: A Review[J]. Journal of Marine Science and Engineering, 2020, 8(9): 642.
    [15] 韩同刚, 童思友, 陈江欣, 等. 海底羽状流探测方法分析[J]. 地球物理学进展, 2018, 33(5): 2113-2125.

    Han Tong-gang, Tong Si-you, Chen Jiang-xin, et al. Analysis of Detection Methods for Submarine Plume[J]. Progress in Geophysics, 2018, 33(5): 2113-2125.
    [16] 马媛媛, 辛洋, 蒋磊. 海底热液喷口流体中H2S浓度数据统计及其探测技术进展[J]. 海洋科学, 2020, 44(2): 146-160.

    Ma Yuan-yuan, Xin Yang, Jiang Lei. Concentration Statistics and Detection Technology of Hydrogen Sulfide in Submarine Hydrothermal Vent Fluids[J]. Marine Science, 2020, 44(2): 146-160.
    [17] 刘国栋, 王焱. 环境水力学[M]. 北京: 中国水利水电出版社, 2018.
    [18] Petillo S M, Schmidt H. Autonomous and Adaptive Underwater Plume Detection and Tracking with AUVs: Concepts, Methods, and Available Technology[J]. IFAC Proceedings Volumes, 2012, 45(27): 232-237.
    [19] 曾志刚, 陈祖兴, 张玉祥, 等. 海底热液活动的环境与产物[J]. 海洋科学, 2020, 44(7): 143-155.

    Zeng Zhi-gang, Chen Zu-xing, Zhang Yu-xiang, et al. Seafloor Hydrothermal Activities and Their Geological Environments and Products[J]. Marine Science, 2020, 44(7): 143-155.
    [20] 李灿苹, 尤加春, 朱文娟. 气泡羽状流的识别及其与资源环境相关性分析[J]. 地球物理学进展, 2016, 31(6): 2747-2755.

    Li Can-ping, You Jia-chun, Zhu Wen-juan. Identification of Bubble Plumes and Analysis of Its Correlation with Resource Environment[J]. Progress in Geophysics, 2016, 31(6): 2747-2755.
    [21] Leifer I, Patro R K. The Bubble Mechanism for Methane Transport from the Shallow Sea Bed to the Surface: A Review and Sensitivity Study[J]. Continental Shelf Research, 2002, 22(16): 2409-2428.
    [22] Petillo S M, Schmidt H. Autonomous and Adaptive Underwater Plume Detection and Tracking with AUVs: Concepts, Methods, and Available Technology[J]. IFAC Proceedings Volumes, 2012, 45(27): 232-237.
    [23] 黄远奕. 我国工业废水重金属灰水足迹的分布特征及驱动因子研究[D]. 北京: 北京科技大学, 2020.
    [24] 中华人民共和国生态环境部. 地表水环境质量标准: GB 3838-2002[S]. 北京: 中国标准出版社, 2002.
    [25] Rogowski P, Terrill E, Otero M, et al. Mapping Ocean Outfall Plumes and Their Mixing Using Autonomous Underwater Vehicles[J]. Journal of Geophysical Research Atmospheres, 2012, 117(C7): 1-12.
    [26] Cannell C J, Gadre A S, Stilwell D J. Boundary Tracking and Rapid Mapping of a Thermal Plume Using an Autonomous Vehicle[C]//OCEANS 2006. Boston, MA, USA: IEEE, 2006: 1-6.
    [27] Fahad M, Saul N, Yi G, et al. Robotic Simulation of Dynamic Plume Tracking by Unmanned Surface Vessels[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA: IEEE, 2015.
    [28] Petillo S M. Autonomous & Adaptive Oceanographic Feature Tracking on Board Autonomous Underwater Vehicles[C]//OCEANS 2015. Genova: IEEE, 2015: 1-10.
    [29] Pang S, Farrell J A. Chemical Plume Source Localization [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetics), 2006, 36(5): 1068-1080.
    [30] Tian Y, Kang X, Li Y, et al. Identifying Rhodamine Dye Plume Sources in Near-shore Oceanic Environments by Integration of Chemical and Visual Sensors[J]. Sensors, 2013, 13(3): 3776-3798.
    [31] Mysorewala M F, Cheded L, Popa D O. A Distributed Multi-robot Adaptive Sampling Scheme for the Estimation of the Spatial Distribution in Widespread Fields[J]. EURASIP Journal on Wireless Communications and Networking, 2012, 2012(1): 1-19.
    [32] Camilli R, Reddy C M, Yoerger D R, et al. Tracking Hydrocarbon Plume Transport and Biodegradation at Deepwater Horizon[J]. Science, 2010, 330(6001): 201-204.
    [33] Gildner M L. Framework for Multi-vehicle Adaptive Sampling of Jets and Plumes in Coastal Zones[D]. USA: Massachusetts Institute of Technology, 2013.
    [34] Kukulya A L, Bellingham J G, Stokey R P, et al. Autonomous Chemical Plume Detection and Mapping Demonstration Results with a COTS AUV and Sensor Package[C]//MTS/IEEE Charleston OCEANS Conference. Charleston, USA: IEEE, 2018: 1-6.
    [35] Soares D A R, Miguel J. Formation-based Odour Source Localisation Using Distributed Terrestrial and Marine Robotic Systems[R]. Lausanne: EPFL, 2016.
    [36] 纠海峰. 基于水下机器人的热液羽状流自主搜寻定位方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
    [37] Farrell J A, Murlis J, Long X, et al. Filament-based Atmospheric Dispersion Model to Achieve Short Time-scale Structure of Odor Plumes[J]. Environmental Fluid Mechanics, 2002, 2(1): 143-169.
    [38] Balkovsky E, Shraiman B I. Olfactory Search at High Reynolds Number[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 12589-12593.
    [39] 王阳. 动态气流环境下气味烟羽仿真与气味源定位[D]. 天津: 天津大学, 2013.
    [40] Boufadel M C, Socolofsky S, Katz J, et al. A Review on Multiphase Underwater Jets and Plumes: Droplets, Hydrodynamics, and Chemistry[J]. Reviews of Geophysics, 2020, 58(3).
    [41] Lesieur M, Metais O. New Trends in Large-eddy Simulations of Turbulence[J]. Annual Review of Fluid Mechanics, 1996, 28(1): 45-82.
    [42] Meneveau C, Katz J. Scale-invariance and Turbulence Models for Large-eddy Simulation[J]. Annual Review of Fluid Mechanics, 2000, 32(1): 1-32.
    [43] 温竹青. 基于FLUENT的深海热液羽状流流动模拟[D]. 北京: 中央民族大学, 2011.
    [44] Liu Z, Lu T F. A Simulation Framework for Plume-tracing Research[C]//Proceedings of the 2008 Australasian Conference on Robotics and Automation. Canberra, Australia: ARAA, 2008: 3-5.
    [45] Garg S, Afzulpurkar S, Kumar A. Adaptive Biased Random Walk Algorithm for Ocean Chemical Feature Tracking Using an Autonomous Underwater Vehicle[C]// MTS/IEEE Charleston OCEANS Conference. Charleston, USA: IEEE, 2019: 1-8.
    [46] 纠海峰, 庞硕, 韩冰. 热液羽状流模型的建立与仿真[J]. 计算机仿真, 2015, 32(9): 404-408.

    Jiu Hai-feng, Pang Shuo, Han Bing. Modeling and Simulation of Hydrothermal Plume Model[J]. Computer Simulation, 2015, 32(9): 404-408.
    [47] Fisher M, Dock M. Trace Chemical Sensing of Explosives[M]. New Jersey: John Wiley & Sons, 2006.
    [48] Soares D A R, Miguel J. Formation-based Odour Source Localisation Using Distributed Terrestrial and Marine Robotic Systems[D]. Lausanne: EPFL, 2016.
    [49] Branch A, Guangyu X, Jakuba M V, et al. Autonomous Nested Search for Hydrothermal Venting[C]//International Conference on Automated Planning and Scheduling (ICAPS) 2018, Delft, The Netherlands: AAAI Press, 2018.
    [50] Hwang J, Bose N, Nguyen H D, et al. Oil Plume Mapping: Adaptive Tracking and Adaptive Sampling from an Autonomous Underwater Vehicle[J]. IEEE Access, 2020, 8: 198021-198034.
    [51] 田宇, 王昊, 张进, 等. 深海热液探测水下机器人技术:感知、规划与控制[M].北京: 科学出版社, 2020.
    [52] Han B, Jiu H, Pang S, et al. Hydrothermal Plume Simulation for Autonomous Hydrothermal Vent Discovery[C]//2012 Oceans-Yeosu. Yeosu, Korea(south): IEEE, 2012: 1-7.
    [53] Sutton J, Li W. Development of CPT_M3D for Multiple Chemical Plume Tracing and Source Identification[C]// 2008 Seventh International Conference on Machine Learning and Applications. San Diego, CA, USA: IEEE, 2008: 470-475.
    [54] Tian Y, Zhang A. Simulation Environment and Guidance System for AUV Tracing Chemical Plume in 3-dimensions[C]//2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010). Wuhan: IEEE, 2010: 407-411.
    [55] Arkin R C. Behavior-based Robotics[M]. Cambridge, MA: MIT Press, 1998.
    [56] Burian E, Yoerger D, Bradley A, et al. Gradient Search with Autonomous Underwater Vehicles Using Scalar Measurements[C]//Proceedings of Symposium on Autonomous Underwater Vehicle Technology. Monterey, CA, USA: IEEE, 1996: 86-98.
    [57] Li Z, You K, Song S. AUV Based Source Seeking with Estimated Gradients[J]. Journal of Systems Science and Complexity, 2018, 31(1): 262-275.
    [58] Naeem W, Sutton R, Chudley J. Chemical Plume Tracing and Odour Source Localisation by Autonomous Vehicles[J]. Journal of Navigation, 2007, 60(2): 173-190.
    [59] Hill J, Szewczyk R, Woo A, et al. System Architecture Directions for Network Sensors[J]. ACM SIGOPS Operating Systems Review, 2000, 35(5): 93-104.
    [60] Dhariwal A, Sukhatme G S, Requicha A A G. Bacterium-inspired Robots for Environmental Monitoring[C]//IEEE International Conference on Robotics and Automation, 2004. New Orleans, LA, USA: IEEE, 2004: 1436-1443.
    [61] Grasso F W, Basil J A, Atema J. Toward the Convergence: Robot and Lobster Perspectives of Tracking Odors to Their Source in the Turbulent Marine Environment[C]// Proceedings of the 1998 IEEE International Symposium on Intelligent Control(ISIC) Held Jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation(CIRA) Intell. Gaithersburg, MD, USA: IEEE, 1998: 259-264.
    [62] Jakuba M, Yoerger D, Bradley A, et al. Multiscale, Multimodal AUV Surveys for Hydrothermal Vent Localization[C]//Proceedings of the Fourteenth International Symposium on Unmanned Untethered Submersible Technology (UUST05). 2005.
    [63] Mason J C, Branch A, Xu G Y, et al. Evaluation of AUV Search Strategies for the Localization of Hydrothermal Venting. [EB/OL]. (2020-10-16)[2021-07-07]. https://ica ps20subpages.icaps-conference.org/wp-content/uploads/2020/10/16-PlanRob_2020_paper_13.pdf
    [64] Ferri G, Jakuba M V, Yoerger D R. A Novel Method for Hydrothermal Vents Prospecting Using an Autonomous Underwater Robot[C]//2008 IEEE International Conference on Robotics and Automation. Pasadena, California: IEEE, 2008: 1055-1060.
    [65] Wang L, Pang S, Xu G. 3-Dimensional Hydrothermal Vent Localization Based on Chemical Plume Tracing[C]//Global Oceans 2020: Singapore-US Gulf Coast. Online: IEEE, 2020: 1-7.
    [66] Ai X, You K, Song S. A Source-seeking Strategy for an Autonomous Underwater Vehicle via On-line Field Estimation[C]//2016 14th International Conference on Control, Automation, Robotics and Vision(ICCARV). Phuket, Thailand: IEEE, 2016: 1-6.
    [67] Kramer E. A Tentative Intercausal Nexus and Its Computer Model on Insect Orientation in Windborne Pheromone Plumes[M]//Insect Pheromone Research. Boston, MA: Springer, 1997: 232-247.
    [68] Farrell J A, Pang S, Li W, et al. Chemical Plume Tracing Experimental Results with a REMUS AUV[C]//Oceans 2003. Celebrating the Past Teaming Toward the Future. San Diego, CA, USA: IEEE, 2003: 962-968.
    [69] Farrell J A, Pang S, Wei L. Chemical Plume Tracing via an Autonomous Underwater Vehicle[J]. IEEE Journal of Oceanic Engineering, 2005, 30(2): 428-442.
    [70] Li W, Farrell J A, Pang S, et al. Moth-inspired Chemical Plume Tracing on an Autonomous Underwater Vehicle[J]. IEEE Transactions on Robotics, 2006, 22(2): 292-307.
    [71] Grasso F W, Atema J. Integration of Flow and Chemical Sensing for Guidance of Autonomous Marine Robots in Turbulent Flows[J]. Environmental Fluid Mechanics, 2002, 2(1): 95-114.
    [72] Farrell J A, Pang S, Li W. Plume Mapping via Hidden Markov Methods[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics, 2003, 33(6): 850-863.
    [73] Jiu H, Chen Y, Deng W, et al. Underwater Chemical Plume Tracing Based on Partially Observable Markov Decision Process[J]. International Journal of Advanced Robotic Systems, 2019, 16(2): 1-12.
    [74] Pang S. Reactive Planning and on-line Mapping for Chemical Plume Tracing[D]. CA, USA: University of California, Riverside, 2004.
    [75] Jakuba M, Yoerger D R. Autonomous Search for Hydrothermal Vent Fields with Occupancy Grid Maps[C]//Proc. of ACRA. 2008, 8: 2008.
    [76] Pang S. Plume Source Localization for AUV Based Autonomous Hydrothermal Vent Discovery[C]//OCEANS 2010 MTS/IEEE SEATTLE. Seattle: IEEE, 2010: 1-8.
    [77] 邓薇, 韩端锋, 纠海峰. 基于嗅觉的水下机器人化学羽状物追踪定位方法[J]. 电机与控制学报, 2016(1): 110-118. Deng Wei, Han Duan-feng, Jiu Hai-feng. Chemical Plume Tracing and Localization Method Based on Olfaction for Underwater[J]. Journal of Electric Machines and Control, 2016(1): 110-118.
    [78] Wang L, Pang S. Chemical Plume Tracing Using an AUV Based on POMDP Source Mapping and A-star Path Planning[C]//OCEANS 2019 MTS/IEEE SEATTLE. Seattle: IEEE, 2019: 1-7.
    [79] Sutton R, Barto A. Reinforcement Learning: An Introduction[M]. Cambridge, MA: MIT Press, 1998.
    [80] 李金龙. 部分观测马尔可夫决策过程下的深海热液自主探测研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
    [81] 白双. 基于强化学习蚁群算法的主动嗅觉[D]. 天津: 天津大学, 2009.
    [82] Niu L, Song S, You K. A Plume-tracing Strategy via Continuous State-action Reinforcement Learning[C]//2017 Chinese Automation Congress. Jinan, China: IEEE, 2017: 759-764.
    [83] Hu H, Song S, Chen C L P. Plume Tracing via Model-free Reinforcement Learning Method[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(8): 2515-2527.
    [84] Wang L, Pang S, Li J. Olfactory-based Navigation via Model-based Reinforcement Learning and Fuzzy Inference Methods[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(10): 3014-3027.
    [85] Tang S, Guo A. Choice Behavior of Drosophila Facing Contradictory Visual Cues[J]. Science, 2001, 294(5546): 1543-1547.

  • 加载中
计量
  • 文章访问数:  166
  • HTML全文浏览量:  16
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07
  • 修回日期:  2021-08-26
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回
    服务号
    订阅号