• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下无线传感器网络抗恶意干扰技术应用及研究进展

孙海信 何崇林 王俊峰 陈镕杰 邓训彬

孙海信, 何崇林, 王俊峰, 等. 水下无线传感器网络抗恶意干扰技术应用及研究进展[J]. 水下无人系统学报, 2023, 31(1): 128-142 doi: 10.11993/j.issn.2096-3920.2022-0090
引用本文: 孙海信, 何崇林, 王俊峰, 等. 水下无线传感器网络抗恶意干扰技术应用及研究进展[J]. 水下无人系统学报, 2023, 31(1): 128-142 doi: 10.11993/j.issn.2096-3920.2022-0090
SUN Hai-xin, HE Chong-lin, WANG Jun-feng, CHEN Rong-jie, DENG Xun-bin. Anti-malicious Interference Technology for Underwater Wireless Sensor Networks: Applications and Recent Advances[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 128-142. doi: 10.11993/j.issn.2096-3920.2022-0090
Citation: SUN Hai-xin, HE Chong-lin, WANG Jun-feng, CHEN Rong-jie, DENG Xun-bin. Anti-malicious Interference Technology for Underwater Wireless Sensor Networks: Applications and Recent Advances[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 128-142. doi: 10.11993/j.issn.2096-3920.2022-0090

水下无线传感器网络抗恶意干扰技术应用及研究进展

doi: 10.11993/j.issn.2096-3920.2022-0090
基金项目: 国家自然科学项目基金(61971362)
详细信息
    作者简介:

    孙海信(1977-), 男, 博士, 教授, 主要研究方向为水声通信

    通讯作者:

    何崇林(1995-), 男, 在读博士, 主要研究方向为水下无线传感器网络

  • 中图分类号: U675.7; TJ630.6; TN973

Anti-malicious Interference Technology for Underwater Wireless Sensor Networks: Applications and Recent Advances

  • 摘要: 水下无线传感器网络(UWSNs)越来越广泛地应用于海洋开发等领域, 但其水声通信信道的开放性导致UWSNs容易受到水下的各类恶意干扰, 各类通信抗干扰技术可有效提高UWSNs的通信可靠性。文中首先介绍了通信抗干扰技术的发展历程及其国内外发展现状, 并对通信抗干扰技术的发展规律进行分析; 其次分析了UWSNs中通信抗干扰的关键技术以及技术需求, 最后对UWSNs通信抗干扰技术的发展应用进行了展望。

     

  • 图  1  水下传感器节点内部结构

    Figure  1.  Inner structure of an underwater sensor node

    图  2  南海深海海底观测网试验系统示意图

    Figure  2.  Schematic diagram of test system for deep-sea seabed observation network in south China sea

    图  3  国内外水下无线传感器网络发展历程

    注: 图中SOSUS为sound surveillance system; IUSS为integrated underwater surveillance system; AOSN为adaptive ocean sampling network; DADS为deployable autonomous distributed system; PLUSNET为persistent littoral undersea surveillance network; IMOS为integrated marine observing system

    Figure  3.  Development history of underwater wireless sensor networks at home and abroad

    表  1  各国大型AUV系统型号及参数

    Table  1.   Models and parameters of large-scale AUV in various countries

    型号系列国家下潜最大
    深度/m
    最长
    续航时间/h
    导航通信方式
    “潜龙”系列 中国 6 000 40 惯性导航、铱星、超短基线、长基线、无线电、多普勒计程仪(Doppler velocity log, DVL)等
    “探索”系列 中国 4 500 30 无线电、铱星、GPS定位(或声通信)
    “AutoSub”系列 英国 1 600 50 北极星自主导航系统
    “Hugin”系列 挪威 6 000 360 惯性导航、铱星、HISAS微型导航、海上宽带无线电(marine broadband radio, MBR)通信系统、Wifi、DVL、基于星基增强系统(satellite-based augmentation system, SBAS)的GPS
    “Remus”系列 美国 6 000 70 高度计、惯性导航、铱星、Wifi、无线电、DVL、长基线
    “Gavia”系列 中国 1 000 8 Wifi、铱星、高精度差分GPS(differential GPS, DGPS)接收机iXBlue and Kearfott的高精度DVL辅助惯导系统(inertial navigation system, INS)、超短基线、长基线
    “SeaRaptorTM”系列 中国 6 000 24 Wifi、铱星、惯性导航、DVL、全球导航卫星系统(global navigation satellite system, GNSS)、超短基线、长基线
    下载: 导出CSV
  • [1] 苏毅珊, 张贺贺, 张瑞, 等. 水下无线传感器网络安全研究综述[J]. 电子与信息学报, 2022, 44: 1-13. doi: 10.11999/JEIT221193

    Su Yi-shan, Zhang He-he, Zhang Rui, et al. Review of Security for Underwater Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2022, 44: 1-13. doi: 10.11999/JEIT221193
    [2] Hoang D T, Niyato D, Wang P, et al. Performance Analysis of Wireless Energy Harvesting Cognitive Radio Networks Under Smart Jamming Attacks[J]. IEEE Journal on Selected Areas in Communications, 2015, 1(2): 200-216.
    [3] Jung H, Van Nguyen B, Song I, et al. Design of Anti-Jamming Waveforms for Time-Hopping Spread Spectrum Systems in Tone Jamming Environments[J]. IEEE Transactions on Vehicular Technology, 2019, 69(1): 728-737.
    [4] Popper C, Strasser M, Capkun S. Anti-Jamming Broadcast Communication Using Uncoordinated Spread Spectrum Techniques[J]. IEEE Journal on Selected Areas in Communications, 2010, 28(5): 703-715. doi: 10.1109/JSAC.2010.100608
    [5] Hanawal M K, Abdel-Rahman M J, Krunz M. Joint Adaptation of Frequency Hopping and Transmission Rate for Anti-Jamming Wireless Systems[J]. IEEE Transactions on Mobile Computing, 2015, 15(9): 2247-2259.
    [6] Nutzinger M, Fabian C, Marschalek M. Secure Hybrid Spread Spectrum System for Steganography in Auditive Media[C]//2010 Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Piscataway: IEEE, 2010.
    [7] Purwar A, Joshi D, Chaubey V K. GPS Signal Jamming and Anti-Jamming Strategy—a Theoretical Analysis[C]//2016 IEEE Annual India Conference(INDICON). Piscataway: IEEE, 2016.
    [8] Jia L L, Xu Y H, Sun Y M, et al. Stackelberg Game Approaches for Anti-Jamming Defence in Wireless Networks[J]. IEEE Wireless Communications, 2018, 25(6): 120-128. doi: 10.1109/MWC.2017.1700363
    [9] Yao F Q, Jia L L. A Collaborative Multi-Agent Reinforcement Learning Anti-Jamming Algorithm in Wireless Networks[J]. IEEE Wireless Communications Letters, 2019, 8(4): 1024-1027. doi: 10.1109/LWC.2019.2904486
    [10] Pirayesh H, Zeng H. Jamming Attacks and Anti-Jamming Strategies in Wireless Networks: A Comprehensive Survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 767-809.
    [11] 朱行涛, 刘郁林, 栗铁桩. 基于循环平稳差异的直扩信号盲提取抗干扰方法[J]. 电子学报, 2017, 45(6): 1506-1512. doi: 10.3969/j.issn.0372-2112.2017.06.032

    Zhu Xing-tao, Liu Yu-lin, Li Tie-zhuang. Anti-jamming Method by Blindly Extracting of Direct Sequence Spread Spectrum Signal Based on Cyclostationary Difference[J]. Acta Electronica Sinica, 2017, 45(6): 1506-1512. doi: 10.3969/j.issn.0372-2112.2017.06.032
    [12] Zhang Y S, Zhu W G, Yin C B, et al. Direct Sequence Spread Spectrum Communication Narrowband Interference Cancelation in Compressed Domain[J]. Transactions on Emerging Telecommunications Technologies, 2020, 31(6): e3830.
    [13] Quan H, Zhao H, Cui P Z. Anti-jamming Frequency Hopping System Using Multiple Hopping Patterns[J]. Wireless Personal Communications, 2015, 81(3): 1159-1176. doi: 10.1007/s11277-014-2177-1
    [14] 王俊, 赵宏志, 卿朝进, 等. 同时同频全双工场景中的射频域自适应干扰抵消[J]. 电子与信息学报, 2014, 36(6): 1435-1440.

    Wang Jun, Zhao Hong-zhi, Qing Chao-jin, et al. Adaptive Self-interference Cancellation at RF Domain in Co-frequency Co-time Full Duplex Systems[J]. Journal of Electronics & Information Technology, 2014, 36(6): 1435-1440.
    [15] Luo S X, Zhang S, Ke S, et al. Optimum Combining for Coherent FFH/DS Spread Spectrum Receivers in the Presence of Multi-Tone Jammer[J]. IEEE Access, 2020, 8: 53097-53106. doi: 10.1109/ACCESS.2020.2980858
    [16] Abdulkawi A, Saleh T S, Khattab S, et al. Anti-jamming Defense in Wireless Networks Using Channel Hopping And Error Correcting Code[C]//2012 8th International Conference on Informatics and Systems(INFOS). Piscataway: IEEE, 2012.
    [17] 张道成. 基于空域滤波的 GPS抗干扰算法仿真及性能评估[J]. 指挥控制与仿真, 2019, 41(3): 85-87. doi: 10.3969/j.issn.1673-3819.2019.03.018

    Zhan Dao-cheng. Anti-jamming Algorithm Simulation and Evaluation Performance of GPS Based on Spatial-domain Filter[J]. Command Control & Simulation, 2019, 41(3): 85-87. doi: 10.3969/j.issn.1673-3819.2019.03.018
    [18] 甘泉, 孙学军, 唐斌. 一种基于空域滤波的空间谱估计方法[J]. 信号处理, 2010, 26(2): 3100-3106.

    Gan Quan, Sun Xue-jun, Tang Bin. A Spatial Spectrum Estimation Method Based on the Spatial Filtering Approach[J]. Signal Processing, 2010, 26(2): 3100-3106.
    [19] 王俊, 赵宏志, 马万治, 等. 同时同频全双工宽带射频自干扰抵消性能分析[J]. 通信学报, 2016, 37(9): 121-130. doi: 10.11959/j.issn.1000-436x.2016184

    Wang Jun, Zhao Hong-zhi, Ma Wan-zhi, et al. Performance Analysis of Broadband Self-Interference Cancellation at RF Domain in Co-Frequency Co-Time Full Duplex Systems[J]. Journal on Communications, 2016, 37(9): 121-130. doi: 10.11959/j.issn.1000-436x.2016184
    [20] Choi Y S, Shirani-Mehr H. Simultaneous Transmission and Reception: Algorithm, Design and System Level Performance[J]. IEEE Transactions on Wireless Communications, 2013, 12(12): 5992-6010. doi: 10.1109/TWC.2013.101713.121152
    [21] Lee J. Self-Interference Cancelation Using Phase Rotation in Full-Duplex Wireless[J]. IEEE Transactions on Vehicular Technology, 2013, 62(9): 4421-4429. doi: 10.1109/TVT.2013.2264064
    [22] 程莉, 李峥嵘, 黎杨, 等. 基于 MIMO系统的判别性信道估计技术研究[J]. 现代电子技术, 2022, 45(13): 41-44.

    Cheng Li, Li Zheng-rong, Li Yang, et al. Research on Discriminative Channel Estimation Technology Based on MIMO System[J]. Modern Electronics Technique, 2022, 45(13): 41-44.
    [23] 李汀, 张春洁, 夏雨婷. 超大规模混合场 MIMO去伪峰信道估计技术[J/OL]. 信号处理. [2022-12-10]. http://kns.cnki.net/kcms/detail/11.2406.TN.20221107.1748.006.html.
    [24] 殷敬伟, 张晓, 赵安邦, 等. 时间反转镜在水声通信网上行通信中的应用[J]. 哈尔滨工程大学学报, 2011, 32(1): 1-5. doi: 10.3969/j.issn.1006-7043.2011.01.001

    Yin Jing-wei, Zhang Xiao, Zhao An-bang, et al. The Application of a Virtual Time Reversal Mirror to Upstream Communication of Underwater Acoustic Networks[J]. Journal of Harbin Engineering University, 2011, 32(1): 1-5. doi: 10.3969/j.issn.1006-7043.2011.01.001
    [25] 赫彬, 苏洪涛. 认知雷达抗干扰中的博弈论分析综述[J]. 电子与信息学报, 2021, 43(5): 1199-1211. doi: 10.11999/JEIT200843

    He Bin, Su Hong-tao. A Review of Game Theory Analysis in Cognitive Radar Anti-jamming[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1199-1211. doi: 10.11999/JEIT200843
    [26] Jia L L, Yao F Q, Sun Y M, et al. Bayesian Stackelberg Game for Antijamming Transmission with Incomplete Information[J]. IEEE Communications Letters, 2016, 20(10): 1991-1994. doi: 10.1109/LCOMM.2016.2598808
    [27] Lmater M A, Haddad M, Karouit A, et al. Smart Jamming Attacks in Wireless Networks During a Transmission Cycle: Stackelberg Game with Hierarchical Learning Solution[J]. International Journal of Advanced Computer Science and Applications, 2018, 9(4): 358-360.
    [28] Jia L, Xu Y, Sun Y, et al. A Game-Theoretic Learning Approach for Anti-Jamming Dynamic Spectrum Access in Dense Wireless Networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1646-1656. doi: 10.1109/TVT.2018.2889336
    [29] Zhang Y L, Xu Y H, Xu Y T, et al. A Multi-Leader One-Follower Stackelberg Game Approach for Cooperative Anti-Jamming: No Pains, No Gains[J]. IEEE Communications Letters, 2018, 22(8): 1680-1683. doi: 10.1109/LCOMM.2018.2843374
    [30] Han C, Niu Y T. Cross-layer Anti-Jamming Scheme: A Hierarchical Learning Approach[J]. IEEE Access, 2018, 6: 34874-34883. doi: 10.1109/ACCESS.2018.2847045
    [31] Yao F Q, Jia L L, Sun Y, et al. A Hierarchical Learning Approach to Anti-Jamming Channel Selection Strategies[J]. Wireless Networks, 2019, 25(1): 201-213. doi: 10.1007/s11276-017-1551-9
    [32] Wang X M, Xu Y H, Chen C H, et al. Machine Learning Empowered Spectrum Sharing in Intelligent Unmanned Swarm Communication Systems: Challenges, Requirements and Solutions[J]. IEEE Access, 2020, 8: 89839-89849. doi: 10.1109/ACCESS.2020.2994198
    [33] Zhao C Y, Wang Q, Liu X F, et al. Reinforcement Learning Based a Non-Zero-Sum Game for Secure Transmission Against Smart Jamming[J]. Digital Signal Processing, 2021, 112: 103002. doi: 10.1016/j.dsp.2021.103002
    [34] Liu S Y, Xu Y F, Chen X Q, et al. Pattern-aware Intelligent Anti-Jamming Communication: A Sequential Deep Reinforcement Learning Approach[J]. IEEE Access, 2019, 7: 169204-169216. doi: 10.1109/ACCESS.2019.2954531
    [35] Nasir Y S, Guo D. Multi-agent Deep Reinforcement Learning for Dynamic Power Allocation in Wireless Networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(10): 2239-2250. doi: 10.1109/JSAC.2019.2933973
    [36] Yang H L, Xiong Z H, Zhao J, et al. Intelligent Reflecting Surface Assisted Anti-Jamming Communications: A Fast Reinforcement Learning Approach[J]. IEEE Transactions on Wireless Communications, 2020, 20(3): 1963-1974.
    [37] Liu X, Xu Y H, Jia L L, et al. Anti-Jamming Communications Using Spectrum Waterfall: A Deep Reinforcement Learning Approach[J]. IEEE Communications Letters, 2018, 22(5): 998-1001. doi: 10.1109/LCOMM.2018.2815018
    [38] Li K, Jiu B, Liu H W, et al. Reinforcement Learning Based Anti-Jamming Frequency Hopping Strategies Design for Cognitive Radar[C]//2018 IEEE International Conference on Signal Processing, Communications and Computing(ICSPCC). Piscataway: IEEE, 2018.
    [39] Xu J L, Lou H X, Zhang W F, et al. An Intelligent Anti-Jamming Scheme for Cognitive Radio Based on Deep Reinforcement Learning[J]. IEEE Access, 2020, 8: 202563-202572. doi: 10.1109/ACCESS.2020.3036027
    [40] 宋佰霖, 许华, 蒋磊, 等. 一种基于深度强化学习的通信抗干扰智能决策方法[J]. 西北工业大学学报, 2021, 39(3): 641-649. doi: 10.3969/j.issn.1000-2758.2021.03.022

    Song Bai-lin, Xu Hua, Jiang Lei, et al. An Intelligent Decision-Making Method for Anti-Jamming Communication Based on Deep Reinforcement Learning[J]. Journal of Northwestern Polytechnical University, 2021, 39(3): 641-649. doi: 10.3969/j.issn.1000-2758.2021.03.022
    [41] Bi Y, Wu Y, Hua C Q. Deep Reinforcement Learning Based Multi-User Anti-Jamming Strategy[C]//CC 2019-2019 IEEE International Conference on Communications(ICC). Piscataway: IEEE, 2019.
    [42] Nguyen C T, Van Huynh N, Chu N H, et al. Transfer Learning for Future Wireless Networks: A Comprehensive Survey[J]. Proceedings of the IEEE, 2021, 110(8): 1073-1115.
    [43] Chen G H, Zhan Y J, Chen Y, et al. Reinforcement Learning Based Power Control for in-body Sensors in WBANs Against Jamming[J]. IEEE Access, 2018, 6: 37403-37412. doi: 10.1109/ACCESS.2018.2850659
    [44] Han C, Niu Y T. Multi-regional Anti-Jamming Communication Scheme Based on Transfer Learning and Q Learning[J]. KSII Transactions on Internet and Information Systems (TIIS), 2019, 13(7): 3333-3350.
    [45] Lu X Z, Xiao L, Dai C H, et al. UAV-aided Cellular Communications with Deep Reinforcement Learning Against Jamming[J]. IEEE Wireless Communications, 2020, 27(4): 48-53. doi: 10.1109/MWC.001.1900207
    [46] Saeed N, Celik A, Al-Naffouri T Y, et al. Localization of Energy Harvesting Empowered Underwater Optical Wireless Sensor Networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(5): 2652-2663. doi: 10.1109/TWC.2019.2906309
    [47] Akyildiz I F, Pompili D, Melodia T. State-of-the-art in Protocol Research for Underwater Acoustic Sensor Networks[C]//Proceedings of the 1st ACM International Workshop on Underwater Networks. New York, NY, USA: Association for Computing Machinery, 2006: 7-16.
    [48] Zhou M Z, Wang J F, Sun H X, et al. A Novel DNN Based Channel Estimator for Underwater Acoustic Communications with IM-OFDM[C]//2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Piscataway: IEEE, 2020.
    [49] 李斌, 郑思远, 曹秀岭, 等. 一种AUV移动OFDM水声通信系统设计[J]. 水下无人系统学报, 2018, 26(6): 612-617.

    Li Bin, Zhang Si-yuan, Cao Xiu-ling, et al. Design on Mobile OFDM Underwater Acoustic Communication System for an AUV[J]. Journal of Unmanned Undersea Systems, 2018, 26(6): 612-617.
    [50] Chen P, Rong Y, Nordholm S, et al. Compressed Sensing Based Channel Estimation and Impulsive Noise Cancelation in Underwater Acoustic OFDM Systems[C]// 2016 IEEE region 10 conference (TENCON). Singapore: IEEE, 2016.
    [51] 钟宏伟. 国外无人水下航行器装备与技术现状及展望[J]. 水下无人系统学报, 2017, 25(4): 215-225. doi: 10.11993/j.issn.2096-3920.2017.03.001

    Zhong Hong-wei. Review and Prospect of Equipment and Techniques for Unmanned Undersea Vehicle in Foreign Countries[J]. Journal of Unmanned Undersea Systems, 2017, 25(4): 215-225. doi: 10.11993/j.issn.2096-3920.2017.03.001
    [52] 申中寅. 日本海洋实时监测系统DONET简介[J]. 国际地震动态, 2018(7): 34-40. doi: 10.3969/j.issn.0253-4975.2018.07.007

    Shen Zhong-yin. A Brief Introduction to DONET in Japan[J]. Recent Developments in World Seismology, 2018(7): 34-40. doi: 10.3969/j.issn.0253-4975.2018.07.007
    [53] 李风华, 路艳国, 王海斌, 等. 海底观测网的研究进展与发展趋势[J]. 中国科学院院刊, 2019, 34(3): 321-330. doi: 10.16418/j.issn.1000-3045.2019.03.010

    Li Feng-hua, Lu Yan-guo, Wang Hai-bin, et al. Research Progress and Development Trend of Seafloor Observation Network[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 321-330. doi: 10.16418/j.issn.1000-3045.2019.03.010
    [54] Shen Z Z, Wang S, Tan M, et al. Robotfish-based Underwater Mobile Sensor Networks for Environmental Monitoring[C]//The Fifteenth International Offshore and Polar Engineering Conference. Seoul, Korea: ISOPE, 2005.
    [55] Luo H J, Zhao Y Y, Guo Z W, et al. UDB: Using Directional Beacons for Localization in Underwater Sensor Networks[C]//2008 14th IEEE International Conference on Parallel and Distributed Systems. Melbourne, VIC, Australia: IEEE, 2008.
    [56] Luo H J, Guo Z W, Dong W, et al. LDB: Localization with Directional Beacons for Sparse 3D Underwater Acoustic Sensor Networks[J]. Journal of Networks, 2010, 5(1): 28-38.
    [57] Dou J F, Guo Z W, Cao J B, et al. Optimum Transmission Range for Underwater Acoustic Sensor Networks[C]// 2008 International Conference on Information Networking. Busan, Korea: IEEE, 2008.
    [58] Misra S, Singh R, Mohan S V R. Information Warfare-Worthy Jamming Attack Detection Mechanism for Wireless Sensor Networks Using a Fuzzy Inference System[J]. Sensors, 2010, 10(4): 3444-3479. doi: 10.3390/s100403444
    [59] Sampath A, Dai H, Zheng H, et al. Multi-channel Jamming Attacks Using Cognitive Radios[C]//2007 16th International Conference on Computer Communications and Networks. Honolulu, USA: IEEE, 2007: 352-357.
    [60] Wu Y, Wang B, Liu K J R, et al. Anti-Jamming Games in Multi-Channel Cognitive Radio Networks[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(1): 4-15. doi: 10.1109/JSAC.2012.120102
    [61] Xu W, Trappe W, Zhang Y, et al. The Feasibility of Launching and Detecting Jamming Attacks in Wireless Networks[C]//Proceedings of the 6th ACM International Symposium on Mobile ad hoc Networking and Computing-MobiHoc’05. Urbana-Champaign, IL, USA: ACM Press, 2005: 46.
    [62] Zhu H J, Fang C L H, Liu Y, et al. You can Jam but You Cannot Hide: Defending Against Jamming Attacks for Geo-Location Database Driven Spectrum Sharing[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(10): 2723-2737. doi: 10.1109/JSAC.2016.2605799
    [63] Xiao L, Li Q D, Chen T H, et al. Jamming Games in Underwater Sensor Networks with Reinforcement Learning[C]//2015 IEEE Global Communications Conference (GLOBECOM). San Diego, USA: IEEE, 2015.
    [64] Xiao L, Jiang D H, Wang X Y, et al. Anti-Jamming Underwater Transmission with Mobility and Learning[J]. IEEE Communications Letters, 2018, 22(3): 542-545. doi: 10.1109/LCOMM.2018.2792015
    [65] Xiao L, Jiang D H, Chen Y, et al. Reinforcement-learning-based Relay Mobility and Power Allocation for Underwater Sensor Networks Against Jamming[J]. IEEE Journal of Oceanic Engineering, 2020, 45(3): 1148-1156. doi: 10.1109/JOE.2019.2910938
    [66] Su Y, Li L, Fan R, et al. A Secure Transmission Scheme with Energy-Efficient Cooperative Jamming for Underwater Acoustic Sensor Networks[J]. IEEE Sensors Journal, 2022, 22(21): 21287-21298. doi: 10.1109/JSEN.2022.3202169
    [67] Zuba M, Shi Z, Peng Z, et al. Launching Denial-of-service Jamming Attacks in Underwater Sensor Networks[C]//Proceedings of the 6th International Workshop on Underwater Networks. New York, USA: Association for Computing Machinery, 2011: 1-5.
    [68] Yang G, Dai L, Wei Z. Challenges, Threats, Security Issues and New Trends of Underwater Wireless Sensor Networks[J]. Sensors, 2018, 18(11): 3907. doi: 10.3390/s18113907
    [69] Stajano F. The Resurrecting Duckling[M]. Security Protocols. Berlin, Heidelberg: Springer, 2000.
    [70] Hu F, Wilson S, Xiao Y. Correlation-Based Security in Time Synchronization of Sensor Networks[C]//2008 IEEE Wireless Communications and Networking Conference. Las Vegas, USA: IEEE, 2008.
    [71] Xu M, Liu G, Zhu D, et al. A Cluster-Based Secure Synchronization Protocol for Underwater Wireless Sensor Networks-2014[EB/OL]. [2023-01-08]. https://journals.sagepub.com/doi/full/10.1155/2014/398610.
    [72] Pu C, Lim S, Jung B, et al. Mitigating Stealthy Collision Attack in Energy Harvesting Motivated Networks[C]// 2017 IEEE Military Communications Conference (MILCOM). Baltimore, USA: IEEE, 2017.
    [73] Kamalesh S, Kumar P G. Fuzzy Based Secure Intrusion Detection System for Authentication in Wireless Sensor Networks[J]. Journal of Computational and Theoretical Nanoscience, 2017, 14(5): 2465-2472. doi: 10.1166/jctn.2017.6247
    [74] Fotohi R, Firoozi Bari S, Yusefi M. Securing Wireless Sensor Networks Against Denial-of-Sleep Attacks Using RSA Cryptography Algorithm and Interlock Protocol[J]. International Journal of Communication Systems, 2020, 33(4): e4234.
    [75] Pandarinath P. Secure Localization with Defense against Selective Forwarding Attacks in Wireless Sensor Networks[C]//2011 3rd International Conference on Electronics Computer Technology. Kanyakumari, India: IEEE, 2011: 112-117.
    [76] Ibragimov M, Lee J H, Kalyani M, et al. CCM-UW Security Modes for Low-band Underwater Acoustic Sensor Networks[J]. Wireless Personal Communications, 2016, 89(2): 479-499. doi: 10.1007/s11277-016-3283-z
    [77] Ahmed M R, Aseeri M, Kaiser M S, et al. A Novel Algorithm for Malicious Attack Detection in UWSN[C]//2015 International Conference on Electrical Engineering and Information Communication Technology(ICEEICT). Savar, Bangladesh: IEEE, 2015: 1-6.
    [78] Lim S, Huie L. Hop-by-Hop Cooperative Detection of Selective Forwarding Attacks in Energy Harvesting Wireless Sensor Networks[C]//2015 International Conference on Computing, Networking and Communications (ICNC). Garden Grove, CA, USA: IEEE, 2015: 315-319.
    [79] Jiang J, Han G, Zhu C, et al. A Trust Cloud Model for Underwater Wireless Sensor Networks[J]. IEEE Communications Magazine, 2017, 55(3): 110-116. doi: 10.1109/MCOM.2017.1600502CM
    [80] Saini M, Kaur R K. To Propose a Novel Technique for Detection and Isolation of Misdirection Attack in Wireless Sensor Network[J]. Indian Journal of Science and Technology, 2016, 9(28): 1-7.
    [81] Rathiga P, Sathappan S. Hybrid Detection of Black Hole and Gray Hole Attacks in MANET[C]//2016 International Conference on Computation System and Information Technology for Sustainable Solutions(CSITSS). Bengaluru, India: IEEE, 2016: 135-140.
    [82] Rani P, Kavita, Verma S, et al. Mitigation of Black Hole and Gray Hole Attack Using Swarm Inspired Algorithm with Artificial Neural Network[J]. IEEE Access, 2020, 8: 121755-121764. doi: 10.1109/ACCESS.2020.3004692
    [83] Taylor V F, Fokum D T. Mitigating Black Hole Attacks in Wireless Sensor Networks Using Node-Resident Expert Systems[C]//2014 Wireless Telecommunications Symposium. Washington, DC, USA: IEEE, 2014: 1-7.
    [84] Guerroumi M, Derhab A, Saleem K. Intrusion Detection System against Sink Hole Attack in Wireless Sensor Networks with Mobile Sink[C]//2015 12th International Conference on Information Technology-New Generations. Las Vegas, NV, USA: IEEE, 2015: 307-313.
    [85] Zhang R, Zhang Y. Wormhole-Resilient Secure Neighbor Discovery in Underwater Acoustic Networks[C]//2010 Proceedings IEEE INFOCOM. San Diego, CA, USA: IEEE, 2010: 1-9.
    [86] Dargahi T, Javadi H H S, Shafiei H. Securing Underwater Sensor Networks against Routing Attacks[J]. Wireless Personal Communications, 2017, 96(2): 2585-2602. doi: 10.1007/s11277-017-4313-1
    [87] Yavuz F, Zhao J, Yağan O, et al. On Secure and Reliable Communications in Wireless Sensor Networks: Towards k-connectivity under a Random Pairwise Key Predistribution Scheme[C]//2014 IEEE International Symposium on Information Theory. Honolulu, HI, USA: IEEE, 2014: 2381-2385.
    [88] Islam A A, Taher K A. A Novel Authentication Mechanism for Securing Underwater Wireless Sensors from Sybil Attack[C]//2021 5th International Conference on Electrical Engineering and Information Communication Technology(ICEEICT). Dhaka, Bangladesh: IEEE, 2021: 1-6.
    [89] Arifeen Md M, Al Mamun A, Ahmed T, et al. A Blockchain-Based Scheme for Sybil Attack Detection in Underwater Wireless Sensor Networks[C]//Proceedings of International Conference on Trends in Computational and Cognitive Engineering. Singapore: Springer, 2021: 467-476.
    [90] Li X, Han G, Qian A, et al. Detecting Sybil Attack Based on State Information in Underwater Wireless Sensor Networks[C]//2013 21st International Conference on Software, Telecommunications and Computer Networks - (SoftCOM 2013). [S.l.]: [s.n.], 2013: 1-5.
    [91] Chen H, Lou W. On Protecting End-To-End Location Privacy against Local Eavesdropper in Wireless Sensor Networks[J]. Pervasive and Mobile Computing, 2015, 16: 36-50. doi: 10.1016/j.pmcj.2014.01.006
    [92] Shah D, Kumar V. TCP SYN Cookie Vulnerability[EB/OL]. [2022-12-16]. https://doi.org/10.48550/arXiv.1807.08026.
    [93] Maleki Sadr M A, Ahmadian-Attari M, Amiri R, et al. Worst-Case Jamming Attack and Optimum Defense Strategy in Cooperative Relay Networks[J]. IEEE Control Systems Letters, 2019, 3(1): 7-12. doi: 10.1109/LCSYS.2018.2850658
    [94] Diamant R, Casari P, Tomasin S. Cooperative Authentication in Underwater Acoustic Sensor Networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 954-968. doi: 10.1109/TWC.2018.2886896
    [95] Bagali S, Sundaraguru R. Efficient Channel Access Model for Detecting Reactive Jamming for Underwater Wireless Sensor Network[C]//2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET). Chennai, India: IEEE, 2019.
    [96] Xu M, Liu G, Guan J. Towards a Secure Medium Access Control Protocol for Cluster-Based Underwater Wireless Sensor Networks[J]. International Journal of Distributed Sensor Networks, 2015, 11(5): 325474. doi: 10.1155/2015/325474
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  20
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-08
  • 修回日期:  2023-01-30
  • 网络出版日期:  2023-02-20

目录

    /

    返回文章
    返回
    服务号
    订阅号