• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Kane动力学的十字舵型欠驱动AUV建模与仿真

杨柯

杨柯. 基于Kane动力学的十字舵型欠驱动AUV建模与仿真[J]. 水下无人系统学报, 2023, 31(6): 885-890 doi: 10.11993/j.issn.2096-3920.2022-0085
引用本文: 杨柯. 基于Kane动力学的十字舵型欠驱动AUV建模与仿真[J]. 水下无人系统学报, 2023, 31(6): 885-890 doi: 10.11993/j.issn.2096-3920.2022-0085
YANG Ke. Modeling and Simulation of Cross-Rudder Underactuated AUV Based on Kane Dynamics[J]. Journal of Unmanned Undersea Systems, 2023, 31(6): 885-890. doi: 10.11993/j.issn.2096-3920.2022-0085
Citation: YANG Ke. Modeling and Simulation of Cross-Rudder Underactuated AUV Based on Kane Dynamics[J]. Journal of Unmanned Undersea Systems, 2023, 31(6): 885-890. doi: 10.11993/j.issn.2096-3920.2022-0085

基于Kane动力学的十字舵型欠驱动AUV建模与仿真

doi: 10.11993/j.issn.2096-3920.2022-0085
基金项目: 中国计量大学科研启动基金项目资助(01101/200853).
详细信息
    作者简介:

    杨柯:杨 柯(1983-), 男, 博士, 讲师, 主要研究方向为水下机器人自主运动

  • 中图分类号: TJ630; U674

Modeling and Simulation of Cross-Rudder Underactuated AUV Based on Kane Dynamics

  • 摘要: 为了获得更加精确的自主水下航行器(AUV)动力学模型, 引入Kane动力学的相关知识, 推导出十字舵型欠驱动AUV的运动学和动力学方程。以AUV的位置、姿态、水平舵角和垂直舵角为广义坐标, 推导出广义速度、偏速度和偏角速度的计算公式, 分析了广义主动力和广义惯性力的计算方法, 给出了Kane动力学的建模步骤。通过仿真验证了该建模方法的有效性。

     

  • 图  1  惯性坐标系与载体坐标系

    Figure  1.  The inertia coordinate and body coordinate systems

    图  2  AUV深度随时间变化曲线

    Figure  2.  Curves of depth of AUV versus time

    图  3  AUV纵倾角随时间变化曲线

    Figure  3.  Curve of pitch angle of AUV versus time

    图  4  AUV路径跟踪结果

    Figure  4.  Results of AUV path tracking

    图  5  路径跟踪速度随时间变化曲线

    Figure  5.  Curves of the speed of path tracking versus time

    图  6  推力和扭矩随时间变化曲线

    Figure  6.  Curves of thrust and torque versus time

  • [1] Fenandes V H, Oliveira J C D, Rodrigues D D, et al. Semi-autonomous identification of free span in underwater pipeline from data acquired with AUV—Case study[J]. Applied Ocean Research, 2021, 115: 1-10.
    [2] 张志强, 于瑞航, 崔银锋. AUV水下移动重力测量建模及误差分析[J]. 数字海洋与水下攻防, 2021, 4(1): 1-6.

    Zhang Zhiqiang, Yu Ruihang, Cui Yinfeng. Modeling and error analysis of AUV underwater mobile gravimetry[J]. Digital Ocean & Underwater Warfare, 2021, 4(1): 1-6.
    [3] 徐会希, 姜成林. 基于USV与AUV异构平台协同海洋探测系统研究综述[J]. 中国科学院大学学报, 2021, 38(2): 145-151.

    Xu Huixi, Jiang Chenglin. Heterogeneous oceanographic exploration system based on USV and AUV: A survey of developments and challenges[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(2): 145-151.
    [4] 王亭亭, 张南南, 岳才谦, 等. 基于水声通信的AUV组网与协同导航[J]. 水下无人系统学报, 2021, 29(4): 400-406.

    Wang Tingting, Zhang Nannan, Yue Caiqian, et al. AUV networking and cooperative navigation based on underwater acoustic communication[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 400-406.
    [5] 梁庆卫, 张鑫, 闫晓航. 节点运动对多AUV协同系统全网完成度的影响[J]. 水下无人系统学报, 2021, 29(2): 170-175.

    Liang Qingwei, Zhang Xin, Yan Xiaohang. Influence on nodes movement to holistic-network performability of multi-AUV collaborative system[J]. Journal of Unmanned Undersea Systems, 2021, 29(2): 170-175.
    [6] Cheng C X, Sha Q X, He B, et al. Path planning and obstacle avoidance for AUV: A review[J]. Ocean Engineering, 2021, 235: 1-14.
    [7] Deng Y J, Liu T, Zhao D X. Event-triggered output-feedback adaptive tracking control of autonomous underwater vehicles using reinforcement learning[J]. Applied Ocean Research, 2021, 113: 1-8.
    [8] 尹欣繁, 车兵辉, 章贵川. 小旋翼无人机建模及航线控制研究[J]. 火力与指挥控制, 2022, 47(2): 140-145.

    Yin Xinfan, Che Binghui, Zhang Guichuan. Research on modeling and route control of small-scale rotor UAV[J]. Fire Control & Command Control, 2022, 47(2): 140-145.
    [9] 王林涛, 王健. 四旋翼无人机特种弹药悬停发射动力学研究[J]. 弹道学报, 2022, 34(1): 38-43.

    Wang Lintao, Wang Jian. Four-rotor UAV special ammunition hovering-launch mechanics research[J]. Journal of Ballistics, 2022, 34(1): 38-43.
    [10] Do T T, Vu V H, Liu Z H. Linearization of dynamic equations for vibration and model analysis of flexible joint manipulators[J]. Mechanism and Machine Theory, 2022, 167: 1-17.
    [11] Huang H, Tang G Y, Chen H X, et al. Dynamic modeling and vibration suppression for two-link underwater flexible manipulators[J]. IEEE Access, 2022, 10: 40181-40195. doi: 10.1109/ACCESS.2022.3164706
    [12] 孙志伟, 李亚洲, 武志华. 基于拉格朗日方程的Delta机器人动力学分析[J]. 机电工程技术, 2020, 49(9): 120-123.

    Sun Zhiwei, Li Yazhou, Wu Zhihua. Delta robot dynamics analysis based on Lagrange equation[J]. Mechanical & Electrical Engineering Technology, 2020, 49(9): 120-123.
    [13] Zhang Y L, Zhao G L, Li H X. Multibody dynamic modeling and controlling for unmanned bicycle system[J]. ISA Transaction, 2021, 118: 174-188. doi: 10.1016/j.isatra.2021.02.014
    [14] Cai Y F, Zheng S T, Liu W T, et al. Sliding-model control of ship-mounted Stewart platform for wave compensation using velocity feedforward[J]. Ocean Engineering, 2021, 236: 1-10.
    [15] Caruso M, Bregant L, Gallina P, et al. Design and multi-body dynamic analysis of the Archimede space exploration rover[J]. Acta Astronautica, 2022, 194: 229-241. doi: 10.1016/j.actaastro.2022.02.003
    [16] Cao Y H, Nie W S, Wang Z R, et al. Dynamic modeling of helicopter-slung load system under the flexible sling hypothesis[J]. Aerospace Science and Technology, 2020, 99: 1-8.
    [17] Cibicik A, Egeland O. Kinematics and dynamics of flexible robotic manipulators using dual screws[J]. IEEE Transactions on Robotics, 2021, 37(1): 206-222. doi: 10.1109/TRO.2020.3014519
    [18] 张利军, 姜大鹏, 胡忠辉. 水下航行器跟踪控制的非线性理论分析[M]. 北京: 科学出版社, 2019.
  • 加载中
图(6)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  16
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-28
  • 修回日期:  2023-02-17
  • 录用日期:  2023-03-14
  • 网络出版日期:  2023-12-11

目录

    /

    返回文章
    返回
    服务号
    订阅号