• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ESO的水下机器人机械臂系统鲁棒模型预测控制

王红都 高枫 黎明 付东飞

王红都, 高枫, 黎明, 等. 基于ESO的水下机器人机械臂系统鲁棒模型预测控制[J]. 水下无人系统学报, 2023, 31(6): 827-838 doi: 10.11993/j.issn.2096-3920.2022-0074
引用本文: 王红都, 高枫, 黎明, 等. 基于ESO的水下机器人机械臂系统鲁棒模型预测控制[J]. 水下无人系统学报, 2023, 31(6): 827-838 doi: 10.11993/j.issn.2096-3920.2022-0074
WANG Hongdu, GAO Feng, LI Ming, FU Dongfei. ESO-Based Robust Model Predictive Control for Undersea Vehicle Manipulator System[J]. Journal of Unmanned Undersea Systems, 2023, 31(6): 827-838. doi: 10.11993/j.issn.2096-3920.2022-0074
Citation: WANG Hongdu, GAO Feng, LI Ming, FU Dongfei. ESO-Based Robust Model Predictive Control for Undersea Vehicle Manipulator System[J]. Journal of Unmanned Undersea Systems, 2023, 31(6): 827-838. doi: 10.11993/j.issn.2096-3920.2022-0074

基于ESO的水下机器人机械臂系统鲁棒模型预测控制

doi: 10.11993/j.issn.2096-3920.2022-0074
基金项目: 山东省自然科学基金(ZR2021MF119); 河南省水下智能装备重点实验室开放基金.
详细信息
    作者简介:

    王红都(1984-), 男, 博士, 副教授, 主要研究方向为智能控制、抗干扰控制及海洋运动体控制

  • 中图分类号: TJ630.33; U664.82

ESO-Based Robust Model Predictive Control for Undersea Vehicle Manipulator System

  • 摘要: 考虑到海洋环境的复杂性、不确定性及水下机器人机械臂系统(UVMS)的强非线性、强耦合性等特点, 提出一种基于扩张状态观测器(ESO)的鲁棒模型预测控制(RMPC)方法。首先基于UVMS的动力学特性, 建立其动力学模型, 并忽略不确定项和干扰给出其名义模型系统。然后, 基于名义系统设计了RMPC算法。将原系统的不确定项、干扰以及建模误差等影响因素集总为扩张状态, 设计了ESO对其进行估计, 并在名义模型的RMPC基础上进行了补偿, 以得到应用于UVMS系统的RMPC方法。最后通过仿真实验证明, 基于ESO的RMPC具有很好的轨迹跟踪性能和抗扰动能力。

     

  • 图  1  水下机器人机械臂系统结构图

    Figure  1.  Structure of UVMS

    图  2  鲁棒模型预测控制算法流程

    Figure  2.  Robust model predictive control algorithm flow

    图  3  工况1下UVMS本体三维跟踪情况

    Figure  3.  The 3D tracking situation of UVMS in case 1

    图  4  工况1下轨迹跟踪情况

    Figure  4.  UVMS tracking situation for case 1

    图  5  工况1下ESO干扰估计情况

    Figure  5.  The situation of disturbance by ESO in case 1

    图  6  工况2下的UVMS本体三维跟踪情况

    Figure  6.  The 3D tracking situation of UVMS in case 2

    图  7  工况2下UVMS跟踪情况

    Figure  7.  UVMS tracking situation for case 2

    图  8  工况2下ESO干扰估计情况

    Figure  8.  The situation of disturbance by ESO in case 2

    表  1  工况1下各控制器的跟踪误差RMS指标

    Table  1.   The tracking error of each controller in case 1

    RMS${x_e}$/m${y_e}$/m${z_e}$/m${\psi _e}$/rad${\theta _{e1}}$/rad${\theta _{e2}}$/rad
    RMPCESO0.001 10.002 20.000 20.008 10.004 80.009 1
    NTSMC0.001 20.010 90.001 30.060 60.033 90.015 9
    PID0.062 10.029 90.080 40.040 80.021 70.049 2
    下载: 导出CSV

    表  2  工况2下各控制器跟踪误差RMS指标

    Table  2.   The tracking error of each controller in case 2

    RMS${x_e}$/m${y_e}$/m${z_e}$/m${\psi _e}$/rad${\theta _{e1}}$/rad${\theta _{e2}}$/rad
    RMPCESO0.000 30.000 30.000 10.002 30.004 90.000 5
    NTSMC0.008 30.111 70.036 10.040 30.004 20.730 1
    PID0.030 20.145 20.044 80.011 40.013 30.073 2
    下载: 导出CSV
  • [1] Paull L, Saeedi S, Seto M, et al. AUV navigation and localization: A review[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1): 131-149. doi: 10.1109/JOE.2013.2278891
    [2] Lapierre L, Jouvencel B. Robust nonlinear path-following control of an AUV[J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 89-102. doi: 10.1109/JOE.2008.923554
    [3] Stutters L, Liu H, Tiltman C, et al. Navigation technologies for autonomous underwater vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C(Applications and Reviews), 2008, 38(4): 581-589. doi: 10.1109/TSMCC.2008.919147
    [4] Ishitsuka M, Ishii K. Development and control of an underwater manipulator for AUV[C]//Symposium on Underwater Technology & Workshop on Scientific Use of Submarine Cables & Related Technologies. Tokyo, Japan: IEEE, 2007.
    [5] Cai M, Wang Y, Wang S, et al. Grasping marine products with hybrid-driven underwater vehicle-manipulator system[J]. IEEE Transactions on Automation Science and Engineering, 2020, 99: 1-12.
    [6] Olguin-Diaz E, Arechavaleta G, Jarquin G, et al. A passivity-based model-free force-motion control of underwater vehicle-manipulator systems[J]. IEEE Transactions on Robotics, 2013, 29(6): 1469-1484. doi: 10.1109/TRO.2013.2277535
    [7] Jarzebowska E. Model reference tracking control for constrained robotic systems[C]// Proceedings of the Third International Workshop on Robot Motion and Control. Bukowy Dworek, Poland: IEEE, 2002.
    [8] Fossen T I. Guidance and control of ocean vehicles[J]. Automatica, 1996, 32(8): 1235.
    [9] Tarn T J, Shoults G A, Yang S P. Underwater robots[M]. US: Springer, 1996: 36-54.
    [10] Lin Z, Wang H D, Karkoub M, et al. Prescribed performance based sliding mode path-following control of UVMS with flexible joints using extended state observer based sliding mode disturbance observer[J]. Ocean engineering, 2021, 240: 109915. doi: 10.1016/j.oceaneng.2021.109915
    [11] Antonelli G, Caccavale F, Chiaverini S, et al. Tracking control for underwater vehicle-manipulator systems with velocity estimation[J]. IEEE Journal of Oceanic Engineering, 2000, 25(3): 399-413. doi: 10.1109/48.855403
    [12] Antonelli G, Caccavale F, Chiaverini S. Adaptive tracking control of underwater vehicle-manipulator systems based on the virtual decomposition approach[J]. IEEE Transactions on Robotics and Automation, 2004, 20(3): 594-602. doi: 10.1109/TRA.2004.825521
    [13] Wang Y, Jiang S, Bai C, et al. Trajectory tracking control of underwater vehicle-manipulator system using discrete time delay estimation[J]. IEEE Access, 2017, 5: 7435-7443. doi: 10.1109/ACCESS.2017.2701350
    [14] Akter P, Uddin M, Mekhilef S, et al. Model predictive control of bidirectional isolated DC-DC converter for energy conversion system[J]. International Journal of Electronics, 2015, 102(8): 1407-1427. doi: 10.1080/00207217.2015.1028479
    [15] Yang W, Boyd S. Fast model predictive control using online optimization[J]. IEEE Transactions on Control Systems Technology, 2010, 18(2): 267-278. doi: 10.1109/TCST.2009.2017934
    [16] Scokaert P O M, Mayne D Q. Min-max feedback model predictive control for constrained linear systems[J]. IEEE Transactions on Automatic Control, 1998, 43(8): 1136-1142. doi: 10.1109/9.704989
    [17] Geyer T, Papafotiou G, Morari M. Model predictive direct torque control—Part I: Concept, algorithm, and analysis[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1894-1905. doi: 10.1109/TIE.2008.2007030
    [18] Shen C, Shi Y, Buckham B. Integrated path planning and tracking control of an AUV: A unified receding horizon optimization approach[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(99): 1163-1173.
    [19] Li D, Yu Y, Zhai D H, et al. Robust model predictive tracking control for robot manipulators with disturbances[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4288-4297. doi: 10.1109/TIE.2020.2984986
    [20] Dai Y, Yu S, Yan Y, et al. An EKF-based fast tube MPC scheme for moving target tracking of a redundant underwater vehicle-manipulator system[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(6): 2803-2814. doi: 10.1109/TMECH.2019.2943007
    [21] Low K S, Zhuang H. Robust model predictive control and observer for direct drive applications[J]. IEEE Transactions on Power Electronics, 2000, 15(6): 1018-1028. doi: 10.1109/63.892816
    [22] Mata S, Zubizarreta A, Pinto C. Robust tube-based model predictive control for lateral path tracking[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(4): 569-577. doi: 10.1109/TIV.2019.2938102
    [23] Kayacan E, Ramon H, Saeys W. Robust trajectory tracking error model-based predictive control for unmanned ground vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 806-814. doi: 10.1109/TMECH.2015.2492984
    [24] Bechlioulis C P, Rovithakis G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099. doi: 10.1109/TAC.2008.929402
    [25] Bidram A, Davoudi A, Lewis F L, et al. Distributed cooperative secondary control of microgrids using feedback linearization[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3462-3470. doi: 10.1109/TPWRS.2013.2247071
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  28
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 修回日期:  2023-01-12
  • 录用日期:  2023-11-23
  • 网络出版日期:  2023-11-30

目录

    /

    返回文章
    返回
    服务号
    订阅号