• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下滑翔机中尺度过程空间采样运动仿真

秦悦 王冠琳 官晟 王岩峰 丁军航

秦悦, 王冠琳, 官晟, 等. 水下滑翔机中尺度过程空间采样运动仿真[J]. 水下无人系统学报, 2022, 30(4): 474-484 doi: 10.11993/j.issn.2096-3920.202112003
引用本文: 秦悦, 王冠琳, 官晟, 等. 水下滑翔机中尺度过程空间采样运动仿真[J]. 水下无人系统学报, 2022, 30(4): 474-484 doi: 10.11993/j.issn.2096-3920.202112003
QIN Yue, WANG Guan-lin, GUAN Sheng, WANG Yan-feng, DING Jun-hang. Motion Simulation of Spatial Sampling of Mesoscale Processes for Underwater Gliders[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 474-484. doi: 10.11993/j.issn.2096-3920.202112003
Citation: QIN Yue, WANG Guan-lin, GUAN Sheng, WANG Yan-feng, DING Jun-hang. Motion Simulation of Spatial Sampling of Mesoscale Processes for Underwater Gliders[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 474-484. doi: 10.11993/j.issn.2096-3920.202112003

水下滑翔机中尺度过程空间采样运动仿真

doi: 10.11993/j.issn.2096-3920.202112003
基金项目: “全球变化与海气相互作用(二期) ”专项(GASI-01-ATP-STwin); 国家重点研发计划资助项目(2016YFC0301103)
详细信息
    作者简介:

    秦悦:秦 悦(1997-), 女, 在读硕士, 主要研究方向为智能控制技术

  • 中图分类号: TJ630.1; U674.7; TB71.2

Motion Simulation of Spatial Sampling of Mesoscale Processes for Underwater Gliders

  • 摘要: 海洋中尺度过程包括涡旋、锋面和内波等现象, 是海洋中一类重要的动力过程, 在全球气候变化、海洋能量热量和物质输送过程中起着重要作用。对此类过程的观测与研究, 在海洋资源勘测、海洋生物探索以及军事等领域也有着较为重要的现实意义。水下滑翔机已成为近年来观测中尺度过程的重要工具之一。文中以海燕-Ⅱ自主式无人水下滑翔机作为研究对象, 首先, 根据动量和角动量定理建立了其六自由度动力学模型; 然后, 利用Simulink仿真对该模型进行了验证, 由仿真结果可知, 所提出的动力学模型能够较好地实现运动仿真; 最后, 针对几种中尺度过程不同的探测要求, 设计了水下滑翔机的运动方案, 并进行了空间采样运动的仿真, 仿真结果可为日后实际观测应用提供参考和优化参数。

     

  • 图  1  Petrel-Ⅱ坐标系定义

    Figure  1.  Coordinate system definition of Petrel-Ⅱ

    图  2  Petrel-Ⅱ系统布局简化结构图

    Figure  2.  Simplified diagram of system layout of Petrel-Ⅱ

    图  3  Simulink模块

    Figure  3.  Simulink model

    图  4  锯齿状运动下驱动浮力和俯仰调节单元位移随时间变化曲线

    Figure  4.  Time-history curves of driving buoyancy and displacement of pitch regulating unit under the saw-tooth motion

    图  5  锯齿状运动下水平位移和垂直深度随时间变化曲线

    Figure  5.  Time-history curves of horizontal displacement and vertical depth under the saw-tooth motion

    图  6  锯齿状运动下纵垂面运动轨迹

    Figure  6.  Trajectory on vertical plane under the saw-tooth motion

    图  7  锯齿状运动下攻角随时间变化曲线

    Figure  7.  Time-history curve of attack angle under the saw-tooth motion

    图  8  锯齿状运动下速度分量随时间变化曲线

    Figure  8.  Time-history curves of velocity component under the saw-tooth motion

    图  9  锯齿状运动下俯仰角和角速度随时间变化曲线

    Figure  9.  Time-history curves of pitch angle and pitch angular velocity under the saw-tooth motion

    图  10  温度锋影响深度云图

    Figure  10.  Contours of influence depth of thermal front

    图  11  温度锋探测纵垂面运动轨迹仿真曲线

    Figure  11.  Trajectory simulation curve of detected thermal front on vertical plane

    图  12  温度锋探测水平位移和垂直深度随时间变化曲线

    Figure  12.  Time-history curves of horizontal displacement and vertical depth of detected thermal front during simulation

    图  13  温度锋探测俯仰角和角速度随时间变化曲线

    Figure  13.  Time-history curves of pitch angle and pitch angular velocity of detected thermal front during simulation

    图  14  定深运动下次中尺度反气旋涡旋探测的纵垂面运动轨迹

    Figure  14.  Trajectory on vertical plane of detected sub mesoscale anticyclone vortex under the depthkeeping motion

    图  15  定深运动下次中尺度反气旋涡旋探测的水平位移和垂直深度随时间变化曲线

    Figure  15.  Time-history curves of horizontal displacement and vertical depth of detected sub mesoscale anticyclone vortex under the depthkeeping motion

    图  16  定深运动下次中尺度反气旋涡旋探测的俯仰角和角速度随时间变化曲线

    Figure  16.  Time-history curves of pitch angle and pitch angular velocity of detected sub mesoscale anticyclone vortex under the depthkeeping motion

    图  17  锯齿状运动下次中尺度反气旋涡旋探测的纵垂面运动轨迹

    Figure  17.  Trajectory on vertical plane of detected sub mesoscale anticyclone vortex under the saw-tooth motion

    图  18  锯齿状运动下次中尺度反气旋涡旋探测的水平位移和垂直深度随时间变化曲线

    Figure  18.  Time-history curves of horizontal displacement and vertical depth of detected sub mesoscale anticyclone vortex under the saw-tooth motion

    图  19  锯齿状运动下次中尺度反气旋涡旋探测的俯仰角和角速度随时间变化曲线

    Figure  19.  Time-history curves of pitch angle and pitch angular velocity of detected sub mesoscale anticyclone vortex under the saw-tooth motion

    图  20  南海涡旋三维结构

    Figure  20.  Three dimensional structure of the vortex of the South China Sea

    图  21  螺旋式运动下三维运动轨迹

    Figure  21.  Three dimensional trajectory under the spiral motion

    图  22  螺旋式运动下纵垂面运动轨迹

    Figure  22.  Trajectory on vertical plane under the spiral motion

    图  23  螺旋式运动下水平面运动轨迹

    Figure  23.  Trajectory on horizontal plane under the spiral motion

    图  24  螺旋式运动下位移和速度随时间变化曲线

    Figure  24.  Time-history curves of displacement and velocity under the spiral motion

    图  25  螺旋式运动下角度和角速度曲线随时间变化曲线

    Figure  25.  Time-history curves of angle and angular velocity under the spiral motion

    图  26  螺旋式运动下攻角和漂角随时间变化曲线

    Figure  26.  Time-history curves of attack angle and drift angle under the spiral motion

    表  1  物理参数含义及取值

    Table  1.   Meanings of physical parameters and their values

    物理参数含义数值
    $ {m \mathord{\left/ {\vphantom {m {{\text{kg}}}}} \right. } {{\text{kg}}}} $滑翔机总质量69
    $ {{{m_p}} \mathord{\left/ {\vphantom {{{m_p}} {{\text{kg}}}}} \right. } {{\text{kg}}}} $俯仰调节重块质量18
    $ {\rho \mathord{\left/ {\vphantom {\rho {({\text{kg}} \cdot {{\text{m}}^{ - 3}})}}} \right. } {({\text{kg}} \cdot {{\text{m}}^{ - 3}})}} $海水密度1 022
    $ {g \mathord{\left/ {\vphantom {g {({\text{m}} \cdot {{\text{s}}^{ - 2}})}}} \right. } {({\text{m}} \cdot {{\text{s}}^{ - 2}})}} $重力加速度9.8
    $ {{{\lambda _{11}}} \mathord{\left/ {\vphantom {{{\lambda _{11}}} {{\text{kg}}}}} \right. } {{\text{kg}}}} $x方向上以单位(角)加速度运动时
    x方向的附加质量
    2
    $ {{{\lambda _{22}}} \mathord{\left/ {\vphantom {{{\lambda _{22}}} {{\text{kg}}}}} \right. } {{\text{kg}}}} $y方向上以单位(角)加速度运动时
    y方向的附加质量
    75.8
    $ {{{\lambda _{66}}} \mathord{\left/ {\vphantom {{{\lambda _{66}}} {({\text{kg}} \cdot {{\text{m}}^{ - 2}})}}} \right. } {({\text{kg}} \cdot {{\text{m}}^{ - 2}})}} $附加惯矩31.0
    $ {{{\lambda _{26}}} \mathord{\left/ {\vphantom {{{\lambda _{26}}} {({\text{kg}} \cdot {{\text{m}}^{ - 1}})}}} \right. } {({\text{kg}} \cdot {{\text{m}}^{ - 1}})}} $附加静矩−12
    $ {{{J_{Bz}}} \mathord{\left/ {\vphantom {{{J_{Bz}}} {({\text{kg}} \cdot {{\text{m}}^{ - 2}})}}} \right. } {({\text{kg}} \cdot {{\text{m}}^{ - 2}})}} $转动惯量22.3
    $ {{{y_G}} \mathord{\left/ {\vphantom {{{y_G}} {\text{m}}}} \right. } {\text{m}}} $质心与浮心间的位置分量0.004 7
    $ {{{A_D}} \mathord{\left/ {\vphantom {{{A_D}} {{{\text{m}}^2}}}} \right. } {{{\text{m}}^2}}} $滑翔机横截面积0.038
    $ {L \mathord{\left/ {\vphantom {L {\text{m}}}} \right. } {\text{m}}} $滑翔机主体长度2.17
    $ {{{l_b}} \mathord{\left/ {\vphantom {{{l_b}} {\text{m}}}} \right. } {\text{m}}} $驱动浮力作用点到浮心距离在BX轴分量0.93
    t推力减额系数0.16
    KT推力系数0.34
    $ {{{d_p}} \mathord{\left/ {\vphantom {{{d_p}} {\text{m}}}} \right. } {\text{m}}} $螺旋桨外径0.12
    $ {C_x}(0) $无因次轴向和竖直方向水动力力系数−0.42
    $ C_y^\alpha $BY轴位置导数(水动力)0.316
    $ C_y^r $BY轴旋转导数(水动力矩)−8.37
    $ T_z^\alpha $BZ轴位置导数(水动力)−0.057 3
    $ T_z^r $BZ轴旋转导数(水动力矩)−2.34
    下载: 导出CSV

    表  2  文中模型与文献[15]仿真及海试结果对比

    Table  2.   Comparison of simulation and sea trial results between models used in this study and reference [15]

    最大深度/m下潜俯仰角/(°)上浮俯仰角/(°)
    文中结果158.728−28
    文献[15]仿真结果160.030−29
    文献[15]海试结果153.036−33
    下载: 导出CSV
  • [1] 郑瑞玺, 经志友, 罗士浩. 南海北部反气旋涡旋边缘的次中尺度动力过程分析[J]. 热带海洋学报, 2018, 37(3): 19-25.

    Zheng Rui-xi, Jing Zhi-you, Luo Shi-hao. Analysis of sub-mesoscale Dynamic Processes in the Periphery of Anticyclonic Eddy in the Northern South China Sea[J]. Journal of Tropical Oceangraphy, 2018, 37(3): 19-25.
    [2] Li S, Wang S, Zhang F, et al. Constructing the Three-dimensional Structure of an Anticyclonic Eddy in the South China Sea Using Multiple Underwater Gliders[J]. Journal of Atmospheric and Oceanic Technology, 2019, 36(12): 2449-2470. doi: 10.1175/JTECH-D-19-0006.1
    [3] 范聪慧, 于非, 南峰, 等. 基于无人船的大洋中尺度涡观测系统展望[J]. 海洋科学集刊, 2016, 51(1): 49-57. doi: 10.12036/hykxjk20160719002

    Fan Cong-hui, Yu Fei, Nan Feng, et al. Prospects for Unmanned Observation System of the Oceanic Mesoscale Eddy[J]. Studia Marina Sinica, 2016, 51(1): 49-57. doi: 10.12036/hykxjk20160719002
    [4] 任诗鹤, 王辉, 刘娜. 中国近海海洋锋和锋面预报研究进展[J]. 地球科学进展, 2015, 30(5): 552-563. doi: 10.11867/j.issn.1001-8166.2015.05.0552

    Ren Shi-he, Wang Hui, Liu Na. Review of Ocean Front in Chinese Marginal Seas and Frontal Forecasting[J]. Advances in Earth Science, 2015, 30(5): 552-563. doi: 10.11867/j.issn.1001-8166.2015.05.0552
    [5] 田纪伟, 黄晓冬. 认知和驾驭全球海洋最强内孤立波: 南海北部内孤立波[J]. 科技纵览, 2018(7): 76-77. doi: 10.3969/j.issn.2095-4409.2018.07.032
    [6] Chelton D B, Schlax M G, Samelson R M. Global Observations of Nonlinear Mesoscale Eddies[J]. Progress in Oceanography, 2011, 91(2): 167-216. doi: 10.1016/j.pocean.2011.01.002
    [7] Liu A K, Ramp S R, Zhao Y, et al. A Case Study of Internal Solitary Wave Propagation during ASIAEX 2001[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1144-1156. doi: 10.1109/JOE.2004.841392
    [8] Simmons H, Chang M H, Chang Y T, et al. Modeling and Prediction of Internal Waves in the South China Sea[J]. Oceanography, 2011, 24(4): 88-99. doi: 10.5670/oceanog.2011.97
    [9] 杨廷龙. 日本海海洋锋及涡旋的统计分析[D]. 青岛: 自然资源部第一海洋研究所, 2021.
    [10] Alford M H, Mickett J B, Zhang S, et al. Internal Waves on the Washington Continental Shelf[J]. Oceanography, 2012, 25(2): 66-79. doi: 10.5670/oceanog.2012.43
    [11] Johnston T M S, Rudnick D L, Alford M H, et al. Internal Tidal Energy Fluxes in the South China Sea from Density and Velocity Measurements by Gliders[J]. Journal of Geophysical Research: Oceans, 2013, 118(8): 3939-3949. doi: 10.1002/jgrc.20311
    [12] Fan X, Send U, Testor P, et al. Observations of Irminger Sea Anticyclonic Eddies[J]. Journal of Physical Oceanography, 2013, 43(4): 805-823. doi: 10.1175/JPO-D-11-0155.1
    [13] Li S, Wang S, Zhang F, et al. Observing an Anticyclonic Eddy in the South China Sea Using Multiple Underwater Gliders[C]//OCEANS 2018 MTS/IEEE Charleston. Charleston: IEEE, 2018.
    [14] Li S, Zhang F, Wang S, et al. Constructing the Three-Dimensional Structure of an Anticyclonic Eddy with the Optimal Configuration of an Underwater Glider Network[J]. Applied Ocean Research, 2020, 95: 101893. doi: 10.1016/j.apor.2019.101893
    [15] 刘方. 混合驱动水下滑翔机系统设计与运动行为研究[D]. 天津: 天津大学, 2014.
    [16] 李天森. 鱼雷操纵性[M]. 北京: 国防工业出版社, 2007.
    [17] Wang Y, Niu W, Yu X, et al. Quantitative Evaluation of Motion Performances of Underwater Gliders Considering Ocean Currents[J]. Ocean Engineering, 2021, 236: 109501. doi: 10.1016/j.oceaneng.2021.109501
    [18] Flexas M M, Troesch M I, Chien S, et al. Autonomous Sampling of Ocean Submesoscale Fronts with Ocean Gliders and Numerical Model Forecasting[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(3): 503-521. doi: 10.1175/JTECH-D-17-0037.1
    [19] 谢旭丹, 王静, 储小青, 等. 南海中尺度涡温盐异常三维结构[J]. 海洋学报, 2018, 40(4): 1-14.

    Xie Xu-dan, Wang Jing, Chu Xiao-qing, et al. Three-dimensional Thermohaline Anomaly Structures of Me-soscale Eddies in the South China Sea[J]. Acta Oceanologica Sinica, 2018, 40(4): 1-14.
    [20] 杨绍琼, 成丹, 陈光耀, 等. 面向典型海洋现象观测的水下滑翔机应用综述[J]. 热带海洋学报, 2022, 41(3): 54-74. doi: 10.11978/2021066

    Yang Shao-qiong, Cheng Dan, Chen Guang-yao, et al. Re- view on the Application of Underwater Gliders for Obs- erving Typical Ocean Phenomena[J]. Journal of Tropical Oceanography, 2022, 41(3): 54-74. doi: 10.11978/2021066
    [21] Farrar J T, D’Asaro E, Rodriguez E, et al. S-MODE: The Sub-Mesoscale Ocean Dynamics Experiment[C]//2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 2020.
    [22] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.

    Shen Xin-rui, Wang Yan-hui, Yang Shao-qiong, et al. Development of Underwater Gliders: An Overview and Prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
  • 加载中
图(26) / 表(2)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  45
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 修回日期:  2022-03-01
  • 网络出版日期:  2022-07-29

目录

    /

    返回文章
    返回
    服务号
    订阅号