• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于THINC/QQ格式的超空泡鱼雷三维流场特性及水动力性能优化研究

肖腾 谢彬 杜艳平

肖腾, 谢彬, 杜艳平. 基于THINC/QQ格式的超空泡鱼雷三维流场特性及水动力性能优化研究[J]. 水下无人系统学报, 2022, 30(5): 575-585 doi: 10.11993/j.issn.2096-3920.202112002
引用本文: 肖腾, 谢彬, 杜艳平. 基于THINC/QQ格式的超空泡鱼雷三维流场特性及水动力性能优化研究[J]. 水下无人系统学报, 2022, 30(5): 575-585 doi: 10.11993/j.issn.2096-3920.202112002
XIAO Teng, XIE Bin, DU Yan-ping. 3D Flow Field Characteristics and Hydrodynamic Optimization of Supercavitating Torpedoes Based on THINC/QQ Scheme[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 575-585. doi: 10.11993/j.issn.2096-3920.202112002
Citation: XIAO Teng, XIE Bin, DU Yan-ping. 3D Flow Field Characteristics and Hydrodynamic Optimization of Supercavitating Torpedoes Based on THINC/QQ Scheme[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 575-585. doi: 10.11993/j.issn.2096-3920.202112002

基于THINC/QQ格式的超空泡鱼雷三维流场特性及水动力性能优化研究

doi: 10.11993/j.issn.2096-3920.202112002
基金项目: 国家自然科学基金(11802178); 上海交通大学“深蓝计划”面上项目(SM2020MS004)
详细信息
    作者简介:

    肖腾:肖 腾(1997-), 男, 硕士, 主要研究方向为计算水动力学

  • 中图分类号: TJ630.1; U662.2

3D Flow Field Characteristics and Hydrodynamic Optimization of Supercavitating Torpedoes Based on THINC/QQ Scheme

  • 摘要: 为了研究超空泡鱼雷的超空泡形态演化及水动力特性, 采用开源软件OPENFOAM对超空泡鱼雷自然空泡的复杂流动过程进行了三维数值仿真研究。首先, 基于THINC/QQ格式、剪切应力传输k-ω湍流模型以及Schnerr-Sauer空化模型在非结构网格上建立了不可压缩流体体积函数多相流模型, 并通过与水洞实验案例对比验证了该求解器的准确性。在此基础上, 该研究对无尾翼鱼雷模型开展了不同速度、不同空化器形状以及不同表面浸润性条件下的超空泡流动数值仿真, 给出了典型工况下超空泡鱼雷的三维流场演化过程以及水动力变化规律, 对比了多种空化器形状和尺寸参数的超空泡流场和水动力特性。结果表明: 具有一定锥度或者本身阻力系数较小的空化器可有效降低航行阻力, 但因损失空泡体积可能会降低航行稳定性。文中还新颖地研究了鱼雷表面材料亲疏水性及其布置位置对超空泡水动力性能的影响, 可为超空泡减阻领域的相关研究提供参考。

     

  • 图  1  超空泡鱼雷模型外形尺寸示意图

    Figure  1.  Shape and dimensions of the supercavity torpedo model

    图  2  计算域及网格划分示意图

    Figure  2.  Diagram of computational domain and mesh

    图  3  部分滑移边界条件

    Figure  3.  Boundary conditions of partial slip

    图  4  接触角与亲疏水性的关系

    Figure  4.  Relation between contact angle and hydrophobicity

    图  5  空化器后空泡形态数值仿真结果与实验结果对比

    Figure  5.  Comparison of the cavity behind the cavitator between experimental results and the numerical results

    图  6  ${\boldsymbol{\sigma = 0.064\; 6}}$工况下超空泡形态演化过程

    Figure  6.  Evolution process of supercavity shape at σ=0.064 6

    图  7  ${\boldsymbol{\sigma = 0.039\; 9}}$工况下超空泡形态演化过程

    Figure  7.  Evolution process of supercavity shape at σ=0.039 9

    图  8  ${\boldsymbol{\sigma = 0.027\; 0}}$工况下超空泡形态演化过程

    Figure  8.  Evolution process of supercavity shape at σ=0.027 0

    图  9  局部空泡融合位置压力分布

    Figure  9.  Pressure distribution at the position of partial cavity fusion

    图  10  超空泡航行器水动力系数时历曲线

    Figure  10.  Time-history curves of hydrodynamic coefficients of supercavity vehicle

    图  11  超空泡尺度测量

    Figure  11.  Measurement of supercavity scale

    图  12  不同空化器头型几何模型

    Figure  12.  Models of cavitators with different head shapes

    图  13  不同空化器产生的超空泡轮廓

    Figure  13.  Contours of supercavity generated by different cavitators

    图  14  ${\boldsymbol{\sigma = 0.096\; 5}}$工况下不同接触角鱼雷阻力系数曲线

    Figure  14.  Drag coefficient curves of torpedoes with different contact angles at ${\boldsymbol{\sigma = 0.096\; 5}}$

    图  15  ${\boldsymbol{\sigma = 0.039\; 9}}$工况下不同接触角鱼雷阻力系数曲线

    Figure  15.  Drag coefficient curves of torpedoes with different contact angles at ${\boldsymbol{\sigma = 0.039\; 9}}$

    图  16  ${\boldsymbol{\sigma = 0.030\; 5}}$工况下不同接触角鱼雷阻力系数曲线

    Figure  16.  Drag coefficient curves of torpedoes with different contact angles at ${\boldsymbol{\sigma = 0.030\; 5}}$

    图  17  2种鱼雷在超空泡初期不同接触角下的头部空泡形态

    Figure  17.  Frontal cavity shapes of two kinds of torpedoes with different contact angles at the initial supercavity stage

    图  18  2种鱼雷在超空泡初期不同接触角下的速度场

    Figure  18.  Velocity field of two kinds of torpedoes with different contact angles at the initial supercavity stage

    图  19  使用超疏水表面的位置(红色为超疏水表面)

    Figure  19.  Positions of superhydrophobic surfaces employed (red color indicates superhydrophobic surfaces)

    图  20  不同超疏水位置鱼雷阻力系数曲线

    Figure  20.  Drag coefficient curves for torpedoes with su- perhydrophobic surfaces at different positions

    图  21  不同超疏水位置鱼雷粘性阻力系数曲线

    Figure  21.  Viscous drag coefficient curves for torpedoes with superhydrophobic surfaces at different positions

    表  1  超空泡尺度网格收敛性测试

    Table  1.   Mesh convergence test on the supercavity scale

    网格编号网格数 特征长度(${{{l_c}} \mathord{\left/ {\vphantom {{{l_c}} D}} \right. } D} $)特征直径(${ { {d_c} } \mathord{\left/ {\vphantom { { {d_c} } D} } \right. } D}$)
    网格10.85×10671.1266.323
    网格21.14×10670.3646.086
    网格31.74×10669.2385.891
    网格42.51×10669.7255.903
    下载: 导出CSV

    表  2  超空泡尺度数值结果验证

    Table  2.   Validation of numerical results of supercavity scale

    Reichardt
    公式
    Logvinovich
    公式
    文中
    方法
    相对误差
    R/%
    相对误差
    L/%
    特征长度67.01667.14269.2383.323.17
    特征直径5.7445.6605.8912.564.08
    下载: 导出CSV

    表  3  不同空化器超空泡阶段阻力系数

    Table  3.   Drag coefficients for different cavitators at the supercavity stage

    空化器头型(a)(b)(c)(d)(e)(f)
    ${C_D}$0.1270.2960.0980.0750.0560.080
    下载: 导出CSV
  • [1] Kuklinski R, Castano J, Henoch C. Experimental Study of Ventilated Cavities on Dynamic Test Model[C]//CAV2001. Pasadena, CA: California Institute of Technology, 2001.
    [2] Ahn B K, Lee T K, Kim H T, et al. Experimental Investigation of Supercavitating Flows[J]. International Journal of Naval Architecture and Ocean Engineering, 2012, 4(2): 123-131. doi: 10.2478/IJNAOE-2013-0083
    [3] Saranjam B. Experimental and Numerical Investigation of an Unsteady Supercavitating Moving Body[J]. Ocean Engineering, 2013, 59: 9-14. doi: 10.1016/j.oceaneng.2012.12.021
    [4] 贾力平, 于开平, 张嘉钟, 等. 空化器参数对超空泡形成和发展的影响[J]. 力学学报, 2007, 23(2): 210-216. doi: 10.3321/j.issn:0459-1879.2007.02.010

    Jia Li-ping, Yu Kai-ping, Zhang Jia-zhong, et al. Influence of Cavitator Parameters on Formation and Development of Supercavity[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(2): 210-216. doi: 10.3321/j.issn:0459-1879.2007.02.010
    [5] 王瑞, 党建军, 姚忠. 不同外形空化器绕回转体超空化特性试验研究[J]. 水下无人系统学报, 2019, 27(1): 20-24.

    Wang Rui, Dang Jian-jun, Yao Zhong. Experimental Study on the Supercavitation Characteristics of Cavitators with Different Profiles around the Rotating Body[J]. Journal of Unmanned Undersea Systems, 2019, 27(1): 20-24.
    [6] 齐江辉, 郑亚雄. 空化器形状对超空泡流场影响的数值模拟[J]. 兵器装备工程学报, 2018, 39(9): 85-88. doi: 10.11809/bqzbgcxb2018.09.018

    Qi Jiang-hui, Zheng Ya-xiong. Numerical Simulation Study on Supercavitation Flow-Field with Different Cavitator Shapes[J]. Journal of Ordnance Equipment Engineering, 2018, 39(9): 85-88. doi: 10.11809/bqzbgcxb2018.09.018
    [7] Kim M J, Kim S H, Lee K C, et al. Cavitator Design for Straight Running Supercavitating Torpedoes[J]. Applied Science. 2021, 11(14): 6247.
    [8] 李雨田. 超空泡航行器流体动力CFD计算[J]. 鱼雷技术, 2015, 23(4): 262-268.

    Li Yu-tian. Calculation of Hydrodynamic Characteristics of Supercavity Vehicle with CFD Method[J]. Torpedo Technology, 2015, 23(4): 262-268.
    [9] 赵潇雨, 周维. 自然超空泡形态特性的数值模拟[J]. 四川兵工学报, 2010, 31(12): 49-52.

    Zhao Xiao-yu, Zhou Wei. Numerical Simulation of the Morphological Properties of Natural Super Vacuoles[J]. Journal of Ordnance Equipment Engineering, 2010, 31(12): 49-52.
    [10] 黄超, 翁翕, 刘谋斌. 超疏水小球低速入水空泡研究[J]. 力学学报, 2019, 51(1): 36-45. doi: 10.6052/0459-1879-18-310

    Huang Chao, Weng Xi, Liu Mou-bin. Study on Low-speed Water Entry of Super-hydrophobic Small Spheres[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 36-45. doi: 10.6052/0459-1879-18-310
    [11] Xie B, Xiao F. Toward Efficient and Accurate Interface Capturing on Arbitrary Hybrid Unstructured Grids: The THINC Method with Quadratic Surface Representation and Gaussian Quadrature[J]. Journal of Computational Physics, 2017, 349: 415-440. doi: 10.1016/j.jcp.2017.08.028
    [12] Menter F R, Kuntz M, Langtry R. Ten Years of Industrial Experience with the SST Turbulence Model[J]. Turbulence, Heat and Mass Transfer, 2003, 4(1): 625-632.
    [13] Schnerr G H, Sauer J. Physical and Numerical Modeling of Unsteady Cavitation Dynamics[C]//4th International Conference on Multiphase Flow. New Orleans: ICMF, 2001.
    [14] Serebryakov V V. Some Models of Prediction of Supercavitation Flows Based on Slender Body Approximation[C]//CAV2001. Pasadena, CA: California Institute of Technology, 2001.
    [15] 张宇文, 袁绪龙, 邓飞. 超空泡航行体流体动力学[M]. 北京: 国防工业出版社, 2014.
    [16] Zhang R, Di Q, Wang X, et al. Numerical Study of the Relationship between Apparent Slip Length and Contact Angle by Lattice Boltzmann Method[J]. Journal of Hydrodynamics, Ser. B, 2012, 24(4): 535-540. doi: 10.1016/S1001-6058(11)60275-8
    [17] Javadpour M, Farahat S, Ajam H, et al. An Experimental and Numerical Study of Supercavitating Flows Tric Cavitators[J]. Journal of Theoretical and Applied Mechanics, 2016, 54(3): 795-810.
    [18] Rerchardt H. The Laws of Cavitation Bubbles at Axially Symmetrical Bodies in a Flow[R]. Spring Quarry, Great Britain: Ministry of Aircraft Production, 1946: 322-326.
    [19] Logvinovich G V. Hydrodynamics of Flow with Free Boundaries[M]. Kiev: Naukova Duma, 1969.
    [20] Self M W, Ripken J F. Steady-state Cavity Studies in a Free-jet Water Tunnel[R/OL]. (1955-07-01)[2021-12-03]. http://www.doc88.com/p-9733182144216.html.
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  17
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-03
  • 修回日期:  2022-01-07
  • 网络出版日期:  2022-09-05

目录

    /

    返回文章
    返回
    服务号
    订阅号