• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无模型自适应控制的底栖式AUV路径点跟踪控制

高鹏 万磊 徐钰斐 陈国防 张子洋

高鹏, 万磊, 徐钰斐, 等. 基于无模型自适应控制的底栖式AUV路径点跟踪控制[J]. 水下无人系统学报, 2022, 30(4): 429-440 doi: 10.11993/j.issn.2096-3920.202109021
引用本文: 高鹏, 万磊, 徐钰斐, 等. 基于无模型自适应控制的底栖式AUV路径点跟踪控制[J]. 水下无人系统学报, 2022, 30(4): 429-440 doi: 10.11993/j.issn.2096-3920.202109021
GAO Peng, WAN Lei, XU Yu-fei, CHEN Guo-fang, ZHANG Zi-yang. Waypoint-tracking Control of a Benthic AUV Based on Model-free Adaptive Control Method[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 429-440. doi: 10.11993/j.issn.2096-3920.202109021
Citation: GAO Peng, WAN Lei, XU Yu-fei, CHEN Guo-fang, ZHANG Zi-yang. Waypoint-tracking Control of a Benthic AUV Based on Model-free Adaptive Control Method[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 429-440. doi: 10.11993/j.issn.2096-3920.202109021

基于无模型自适应控制的底栖式AUV路径点跟踪控制

doi: 10.11993/j.issn.2096-3920.202109021
基金项目: 国家自然科学基金(No.U1713205, 6180319)
详细信息
    作者简介:

    高鹏:高 鹏(1995-), 男, 在读硕士. 研究方向为水下机器人运动控制

    通讯作者:

    万 磊(1964-), 男, 研究员, 博导, 研究方向为水中载体平台操纵与运动控制、水下图像处理技术、水下机器人系统仿真、水下导航和多传感信息融合等

  • 中图分类号: U674.941; TJ630.34

Waypoint-tracking Control of a Benthic AUV Based on Model-free Adaptive Control Method

  • 摘要: 为了解决海洋环境不确定因素高、底栖式自主水下航行器(AUV)模型参数难以精确确定等问题, 将无模型自适应控制(MFAC)方法应用于路径点跟踪控制系统中。针对传统MFAC方法在航向控制中可能存在的积分累加效应引起的收敛速度慢、跟踪精度低等问题, 设计了一种改进的MFAC航向控制器, 证明了航向控制误差的有界性。接着, 针对封闭型视线法制导算法应用于路径点跟踪控制时AUV在路径点切换处航向控制超调较大的问题, 提出了一种双曲正切型航速调整策略, 该策略可以明显促进AUV在路径点切换处的平滑过渡并改善跟踪误差的收敛速度。最后, 进行了底栖式AUV航向控制以及路径点跟踪控制外场试验, 验证了所设计算法的有效性和优越性。

     

  • 图  1  单个底栖式AUV布放回收过程

    Figure  1.  Layout and recovery process of single benthic AUV

    图  2  底栖式AUV外形结构图

    Figure  2.  Outline structure of a benthic AUV

    图  3  底栖式AUV路径点跟踪控制示意图

    Figure  3.  Schematic diagram of waypoint-tracking control of a benthic AUV

    图  4  底栖式AUV路径点跟踪控制系统框图

    Figure  4.  Block diagram of a benthic AUV waypoint-tracking control system

    图  5  无模型自适应控制框图

    Figure  5.  Block diagram of MFAC

    图  6  IMFAC航向控制框图

    Figure  6.  Block diagram of IMFAC course control

    图  7  基于视线圆的LOS制导律示意图

    Figure  7.  Schematic diagram of LOS guidance law based on line of sight circle

    图  8  FSN-1号底栖式AUV试验平台

    Figure  8.  Test platform of FSN-1 benthic AUV

    图  9  FSN-1号底栖式AUV硬件组成

    Figure  9.  Hardware composition of FSN-1 benthic AUV

    图  10  FSN-1号底栖式AUV软件系统

    Figure  10.  Software system of FSN-1 benthic AUV

    图  11  RO-MFAC方法下−90°定向控制

    Figure  11.  −90° directional control under RO-MFAC method

    图  12  IMFAC方法下−90°定向控制

    Figure  12.  −90° directional control under IMFAC method

    图  13  传统方法下的路径点跟踪控制曲线

    Figure  13.  Waypoint-tracking control curves under traditional method

    图  14  传统方法下偏航距离曲线

    Figure  14.  Yaw curves under traditional method

    图  15  传统方法下航向角跟踪曲线

    Figure  15.  Course angle tracking curves under traditional method

    图  16  传统方法下速度曲线

    Figure  16.  Velocity curve under traditional method

    图  17  改进方法下路径点跟踪控制曲线

    Figure  17.  Waypoint-tracking control curves under the improved method

    图  18  改进方法下偏航距离曲线

    Figure  18.  Yaw curves under the improved method

    图  19  改进方法下航向角跟踪曲线

    Figure  19.  Course angle tracking curves under the improved method

    图  20  改进方法下速度曲线

    Figure  20.  Velocity curves under the improved method

  • [1] Kanazawa T, Shinohara M, Sakai S, et al. Development of Compact Ocean Bottom Cabled Seismometers System for Spatially Dense Observationon Sea Floor and First Installation Plan[C]//Oceans 2009-Europe. Bremen, Germany: IEEE, 2009: 1-7.
    [2] Quadt E, Detomo R, Pirmez C, et al. Ocean Bottom Node Seismic at the Deepwater Bonga Field, Nigeria [C]//International Petroleum Technology Conference. Beijing, China: European Association of Geoscientists & Engineers, 2013.
    [3] Lecerf D, Lafram A, Boelle J, et al. Ocean Bottom Node Processing in Deep Offshore Environment for Reservoir Monitoring[C]//12th International Congress of the Brazilian Geophysical Society & Expogef. Rio de Janeiro, Brazil: Society of Exploration Geophysicists, 2011.
    [4] Qin H, Wu Z, Zhu Z, et al. Design of a Flying Node AUV for Ocean Bottom Seismicobservations[C]//2018 Oceans-MTS/ IEEE Kobe Techno-Oceans(OTO). Kobe, Japan: IEEE, 2018.
    [5] Holloway A, Grant D, Watts G, et al. The Future of Deepwater Ocean Bottom Seismic Are Flying Nodes the Next Big Step[C]//SEG International Exposition and Annual Meeting. New Orleans, Louisiana: Society of Exploration Geophysicists, 2015: 115-119.
    [6] Qin H D, Wu Z Y, Sun Y C, et al. Prescribed Performance Adaptive Fault-tolerant Trajectory Tracking Control for an Ocean Bottom Flying Node[J]. Int. J Adv. Robot Syst., 2019, 16(3): 13.
    [7] Abdurahman B, Savvaris A, Tsourdos A. A Switching LOS Guidance with Relative Kinematics for Path-Following of Underactuated Underwater Vehicles[J]. Ifac Papersonline, 2017, 50(1): 2290-5. doi: 10.1016/j.ifacol.2017.08.228
    [8] Huang X, Li Y, Du F, et al. Horizontal Path Following for Underactuated AUV Based on Dynamic Circle Guidance[J]. Robotica, 2017, 35(4): 876-91. doi: 10.1017/S0263574715000867
    [9] Elmokadem T, Zribi M, Youcef-Toumi K. Control for Dynamic Positioning and Way-point Tracking of Underactuated Autonomous Underwater Vehicles Using Sliding Mode Control[J]. J. Intell Robot Syst., 2019, 95(3-4): 1113-32. doi: 10.1007/s10846-018-0830-8
    [10] Hou Z, Jin S. A Novel Data-driven Control Approach for a Class of Discrete-time Nonlinear Systems[J]. IEEE Trans. Control Syst. Technol, 2011, 19(6): 1549-1558. doi: 10.1109/TCST.2010.2093136
    [11] Li H, Zheng S, Ren H. Self-correction of Commutation Point for High-speed Sensorless BLDC Motor with Low Inductance and Nonideal Back EMF[J]. IEEE Trans. Power Electron., 2017, 32(1): 642-651. doi: 10.1109/TPEL.2016.2524632
    [12] Lu C, Zhao Y, Men K, et al. Wide-area Power System Stabiliser Based on Model-free Adaptive Control[J]. Control Theory Appl., 2015, 9(13): 1996-2007. doi: 10.1049/iet-cta.2014.1289
    [13] Li Z, Xia Y, Qu Z. Data-driven Background Representation Method to Video Surveillance[J]. Opt. Soc. Amer. A, Opt. Image Sci., 2017, 34(2): 193-202. doi: 10.1364/JOSAA.34.000193
    [14] Tian T T, Hou Z S, Liu S D, et al. Model-free Adaptive Control Based Lateral Control of Self-driving Car[J]. Acta Autom. Sin., 2017, 43(1): 1931-1940.
    [15] 田涛涛, 侯忠生, 刘世达, 等. 基于无模型自适应控制的无人驾驶汽车横向控制方法[J]. 自动化学报, 2017, 43(11): 1931-1940.

    Tian Tao-tao, Hou Zhong-sheng, Liu Shi-da, et al. Model-free Adaptive Control Based Lateral Control of Self-driving Car[J]. Acta Automatica Sinica, 2017, 43(11): 1931-1940.
    [16] 夏青元, 徐锦法, 张梁. 倾转旋翼飞行器无模型自适应姿态控制[J]. 系统工程与电子技术, 2013, 35(1): 146-151.

    Xia Qing-yuan, Xu Jin-fa, Zhang Liang. Model-free Adaptive Attitude Controller for a Tilt-rotor Aircraft[J]. Systems Engineering and Electronics, 2013, 35(1): 146-151.
    [17] Xu D, Jiang B, Shi P. A Novel Model-free Adaptive Control Design for Multivariable Industrial Processes[J]. IEEE Trans. Ind. Electron., 2014, 61(11): 6391-6398. doi: 10.1109/TIE.2014.2308161
    [18] Hou Z S, Xiong S S. On Model-Free Adaptive Control and Its Stability Analysis[J]. IEEE Trans Autom Control, 2019, 64(11): 4555-69. doi: 10.1109/TAC.2019.2894586
    [19] Liao Y L, Jiang Q Q, Du T P, et al. Redefined Output Model-Free Adaptive Control Method and Unmanned Surface Vehicle Heading Control[J]. IEEE J Ocean Eng, 2020, 45(3): 714-23. doi: 10.1109/JOE.2019.2896397
  • 加载中
图(20)
计量
  • 文章访问数:  2400
  • HTML全文浏览量:  17
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 修回日期:  2021-10-26
  • 录用日期:  2021-11-15
  • 网络出版日期:  2022-06-27

目录

    /

    返回文章
    返回
    服务号
    订阅号