• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下攻防武器能源动力技术发展现状及趋势

史小锋 党建军 梁 跃 胡利民 路 骏 乔 宏

史小锋, 党建军, 梁 跃, 胡利民, 路 骏, 乔 宏. 水下攻防武器能源动力技术发展现状及趋势[J]. 水下无人系统学报, 2021, 29(6): 634-647. doi: 10.11993/j.issn.2096-3920.2021.06.001
引用本文: 史小锋, 党建军, 梁 跃, 胡利民, 路 骏, 乔 宏. 水下攻防武器能源动力技术发展现状及趋势[J]. 水下无人系统学报, 2021, 29(6): 634-647. doi: 10.11993/j.issn.2096-3920.2021.06.001
SHI Xiao-feng, DANG Jian-jun, LIANG Yue, HU Li-min, LU Jun, QIAO Hong. Development Status and Trend of Energy and Power Technology for Underwater Attack and Defensive Weapon[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 634-647. doi: 10.11993/j.issn.2096-3920.2021.06.001
Citation: SHI Xiao-feng, DANG Jian-jun, LIANG Yue, HU Li-min, LU Jun, QIAO Hong. Development Status and Trend of Energy and Power Technology for Underwater Attack and Defensive Weapon[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 634-647. doi: 10.11993/j.issn.2096-3920.2021.06.001

水下攻防武器能源动力技术发展现状及趋势

doi: 10.11993/j.issn.2096-3920.2021.06.001
详细信息
    作者简介:

    史小锋(1965-), 男, 研究员, 中国船舶集团高级专家、中国船舶集团有限公司第705研究所科技委主任, 主要研究方向为水下航行器能源与动力技术.

  • 中图分类号: TJ630.32

Development Status and Trend of Energy and Power Technology for Underwater Attack and Defensive Weapon

  • 摘要: 能源动力系统是水下攻防武器的心脏, 其性能很大程度上影响了水下攻防武器的任务范围和作战效能。文中从分析水下攻防武器对能源动力技术的需求出发, 以鱼雷和无人水下航行器为重点, 梳理了水下攻防武器能源动力技术的发展现状, 介绍了美国、俄罗斯、日本以及欧洲各国在能源动力技术方面的特点, 从热动力能源、电动力能源、热机和电机4个方面探讨了水下攻防武器能源动力技术的发展趋势。总结得出, 水下攻防作战逐渐显示出无人化和体系化的特点, 要求水下攻防武器具备远航程、宽速域、大深度的能力, 而能源动力技术则相应地围绕高能量密度能源、高功率密度动力2个主题持续发展。

     

  • [1] 李宗吉, 高永琪, 王树宗, 等. 现代鱼雷-水下导弹[M]. 北京: 兵器工业出版社, 2016.
    [2] 吴晓海. 美国MK48系列鱼雷发展历程带给我们的启示[J]. 鱼雷技术, 2006, 14(3): 7-9.

    Wu Xiao-hai. Inspiration from the Developmental Process of US MK48 Series Torpedoes[J]. Torpedo Technology, 2006, 14(3): 7-9.
    [3] 傅金祝. 苏联/俄罗斯水中兵器的发展[J]. 现代舰船, 2007(9): 34-37.
    [4] 卢军, 陈立强, 崔和. 先进的多任务轻型鱼雷MU90[J]. 鱼雷技术, 2006, 12(1): 57-60.

    Lu Jun, Chen Li-qiang, Cui He. Advanced multi-role lightweight torpedo MU90[J]. Torpedo Technology, 2006, 12(1): 57-60.
    [5] 邹宇. 来自罗马的“黑鲨”鱼雷-意大利白头公司研制的重型鱼雷[J]. 国际展望, 2003(24): 73-75.
    [6] 李伟, 刘海光, 王华荣. 德国战后第2代重型鱼雷技术发展研究[J]. 舰船科学技术, 2020, 42(11): 185-189.

    Li Wei, Liu Hai-guang, Wang Hua-rong. The Development of the Second Generation of Heavy Torpedo after the War II in Germany[J]. Ship Science and Technology, 2020, 42(11): 185-189.
    [7] 路骏, 白超, 高育科, 等. 水下燃料电池推进技术研究进展[J]. 推进技术, 2020, 41(11): 2450-2464.

    Lu Jun, Bai Chao, Gao Yu-ke, et al. Progress on Underwater Fuel Cell Propulsion Technology[J]. Journal of Propulsion Technology, 2020, 41(11): 2450-2464.
    [8] U.S. Navy. The Navy Unmanned Undersea Vehicle Master Plan[R]. USA: U.S. Navy, 2004.
    [9] 蔡年生. UUV 用动力电池现状及发展趋势[J]. 鱼雷技术, 2010, 18(2): 83-85.

    Cai Nian-sheng. Review of Power Battery for UUV with Development Trends[J]. Torpedo Technology, 2010, 18(2): 83-85.
    [10] 龚锋, 王力. UUV用动力锂电池综述[J]. 船电技术, 2013, 8(33): 17-20.

    Gong Feng, Wang Li. Reviews of High Power Lithium Batteries Powered UUV[J]. Marine Electric & Electronic Engineering, 2013, 8(33): 17-20.
    [11] U.S. Navy. Large Displacement Unmanned Undersea Vehicle System[R]. USA: U.S. Navy, 2011.
    [12] U.S. Navy. Long Endurance Undersea Vehicle Propulsion[R]. USA: U.S. Navy, 2011.
    [13] Rosenfeld R L, Prokopius P R, Meyer A P. Fuel Cell Power System Development for Submersibles[C]//Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology. Washington DC, USA: IEEE, 1992.
    [14] Meyer A P. Development of Proton Exchange Membrane Fuel Cells for Underwater Applications[C]//Proceedings of OCEANS’93. Victoria, BC, Canada: IEEE, 1993.
    [15] None. FuelCell Energy Wins US Navy Contract to Develop UUV Power[J]. Fuel Cells Bulletin, 2012(8): 4.
    [16] Malone M. Infinity-Air Independent Fuel Cells[EB/OL]. [2020-02-05].http://www.infinityfuel.com/products/air-independent-fuel-cells.
    [17] Bever D. Energy and Power System for ONR’s LDUUV Program[C]//Fuel Cell Seminar and Exposition. Uncasville, CT, USA: General Atomics, 2012.
    [18] None. Nextech Wins ONR Contract to Develop UUV Energy System[J]. Fuel Cells Bulletin, 2012(6): 4-5.
    [19] Rhodes C, Fenimore J, Hennings B. Long Endurance Fuel Cell Energy System for Unmanned Undersea Vehicles[C]//Fuel Cell Seminar and Exposition. Uncasville, CT, USA: General Atomics, 2012.
    [20] Swartz S L, Arkenberg G B, Thrun L B, et al. SOFC Based UUV Energy System[C]//Fuel Cell Seminar and Exposition. Uncasville, CT, USA: General Atomics, 2012.
    [21] Presley K. A New Oxygen Source for SOFC Based Power Systems for Long Duration UUVs[C]//Fuel Cell Seminar and Exposition. Uncasville, CT, USA: General Atomics, 2012.
    [22] Stoops B N. Navy SBIR/STTR Success[EB/OL]. [2013- 03-01]. http://www.navysbir.com/docs%20/Sierra_final_ onr.pdf.
    [23] Hornfeld W. DeepC-the German AUV Development Project[EB/OL]. [2005-01-10]. http://www.deepc-auv.de/de epc/bibliothek/pdf/South_eng.pdf,
    [24] Hornfeld W. AUV DeepC-Technology Platform for the ATLAS Elektronik AUV Family[C]//23rd International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, CA, USA: OMAE, 2004.
    [25] Raugel E, Rigaud V, Lakeman C. Sea Experiment of a Survey AUV Powered by a Fuel Cell System[C]// IEEE/OES Autonomous Underwater Vehicles. Monterey, CA, USA: IEEE, 2010.
    [26] Yoshida H, Hyakudome T, Ishibashi S, et al. A Compact High Efficiency PEFC System for Underwater Platforms[J]. ECS Transactions, 2010, 26(1): 67-76.
    [27] Yoshida H, Hyakudome T, Ishibashi S, et al. A High Effi-ciency PEFC System Development for Long-Range Cruising Autonomous Underwater Vehicles (LCAUVs)[J]. ECS Transactions, 2009, 17(1): 241-250.
    [28] Toshio M, Shinji I, Kazuhisa Y, et al. Development of Fuel Cell AUV “URASHIMA”[J]. Mitsubishi Heavy Industries Technical Review, 2004, 21(1): 1-5.

  • 加载中
计量
  • 文章访问数:  444
  • HTML全文浏览量:  22
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 修回日期:  2021-11-02
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回
    服务号
    订阅号