• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非线性干扰观测器的AUV量化反馈滑模控制

武建国 陈 凯 陈武进 赵晓宇 张桐瑞 程 涛

武建国, 陈 凯, 陈武进, 赵晓宇, 张桐瑞, 程 涛. 基于非线性干扰观测器的AUV量化反馈滑模控制[J]. 水下无人系统学报, 2021, 29(5): 556-564. doi: 10.11993/j.issn.2096-3920.2021.05.007
引用本文: 武建国, 陈 凯, 陈武进, 赵晓宇, 张桐瑞, 程 涛. 基于非线性干扰观测器的AUV量化反馈滑模控制[J]. 水下无人系统学报, 2021, 29(5): 556-564. doi: 10.11993/j.issn.2096-3920.2021.05.007
WU Jian-guo, CHEN Kai, CHEN Wu-jin, ZHAO Xiao-yu, ZHANG Tong-rui, CHENG Tao. Quantized Feedback Sliding Mode Control for AUV Based on Nonlinear Disturbance Observer[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 556-564. doi: 10.11993/j.issn.2096-3920.2021.05.007
Citation: WU Jian-guo, CHEN Kai, CHEN Wu-jin, ZHAO Xiao-yu, ZHANG Tong-rui, CHENG Tao. Quantized Feedback Sliding Mode Control for AUV Based on Nonlinear Disturbance Observer[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 556-564. doi: 10.11993/j.issn.2096-3920.2021.05.007

基于非线性干扰观测器的AUV量化反馈滑模控制

doi: 10.11993/j.issn.2096-3920.2021.05.007
基金项目: 河北省自然科学基金资助(E2018202259); 天津市重点研发计划(18YFCZZC00050、19YFZCCG00230)
详细信息
    作者简介:

    武建国(1980-), 男, 博士, 研究员, 主要研究方向为水下机器人平台、水下机器人自适应性控制、流场感知.

  • 中图分类号: TP242 U661.33

Quantized Feedback Sliding Mode Control for AUV Based on Nonlinear Disturbance Observer

  • 摘要: 自主水下航行器(AUV)在实际工程应用中, 由于数字回路的存在, 需要将状态变量等量化并传输到控制器中, 使系统稳定性受到了极大的影响。针对AUV轨迹跟踪控制问题, 考虑状态和控制输入量化的影响, 提出一种基于非线性干扰观测器(NDO)的量化反馈滑模控制(SMC)方法。首先, 采用NDO对外界未知干扰进行估计补偿, 以抑制传统SMC中的抖振现象。然后, 提出了一种SMC方案, 将状态变量和输入的量化误差上界加入到SMC的开关项中, 以克服量化对系统稳定性的影响, 第一步证明无论在任何初始值开始, 轨迹都将被驱使到一个较小的带状区域, 第二步通过动态调整量化参数, 使得滑模面s收敛于0。最后, 通过Lyapunov函数证明了系统的稳定性。仿真结果表明, 所设计的量化滑模跟踪控制器能够使AUV较好地跟踪期望轨迹。

     

  • [1] 黄琰, 李岩, 俞建成, 等. AUV智能化现状与发展趋势[J]. 机器人, 2020, 42(2): 215-231.

    Huang Yan, Li Yan, Yu Jian-cheng, et al. State-of-the-Art and Development Trends of AUV Intelligence[J]. Robot, 2020, 42(2): 215-231.
    [2] Li S, Wang X. Finite-time Consensus and Collision Avoidance Control Algorithms for Multiple AUVs[J]. Automatica, 2013, 49(11): 3359-3367.
    [3] Xiang X, Yu C, Zhang Q. Robust Fuzzy 3D Path Following for Autonomous Underwater Vehicle Subject to Uncertainties[J]. Computers & Operations Research, 2016, 84: 165-177.
    [4] Yu X, Kaynak O. Sliding Mode Control Made Smarter: A Computational Intelligence Perspective[J]. IEEE Systems, Man, and Cybernetics Magazine, 2017, 3(2): 31-34.
    [5] Zhang G C, Huang H, Qin H D, et al. A Novel Adaptive Second Order Sliding Mode Path Following Control for a Portable AUV[J]. Ocean Engineering, 2018, 151: 82-92.
    [6] 马利民. 欠驱动AUV全局无抖振滑模轨迹跟踪控制[J].智能系统学报, 2016, 11(2): 200-207.

    Ma Li-min. Global Chattering-free Sliding Mode Trajectory Tracking Control of Underactuated Autonomous Underwater Vehicles[J]. CAAI Transactions on Intelligent Systems, 2016, 11(2): 200-207.
    [7] Jiang C M, Wan L, Sun Y S, et al. Design of Novel Sling-mode Controller for High-velocity AUV with Con-sideration of Residual Dead Load[J]. Journal of Central South University, 2018, 25(1): 121-130.
    [8] Flavia B, Gianluca I, Sauro L, et al. Advanced Control for Fault-tolerant Dynamic Positioning of an Offshore Supply Vessel[J]. Ocean Engineering, 2015, 106: 472-484.
    [9] 潘无为, 姜大鹏, 庞永杰, 等. 相位耦合振子模型下的AUV自适应编队控制算法[J]. 哈尔滨工程大学学报, 2017, 38(1): 115-119.

    Pan Wu-wei, Jiang Da-peng, Pang Yong-jie, et al. Adaptive Formation Control Algorithm for AUV on the Basis of the Coupled Phase Oscillator Model[J]. Journal of Harbin Engineering University, 2017, 38(1): 115-119.
    [10] 杨超, 郭佳, 张铭钧. 基于RBF神经网络的作业型AUV自适应终端滑模控制方法及实验研究[J]. 机器人, 2018, 40(3): 336-345.

    Yang Chao, Guo Jia, Zhang Ming-jun. Adaptive Terminal Sliding Mode Control Method Based on RBF Neural Network for Operational AUV and Its Experimental Re-search[J]. Robot, 2018, 40(3): 336-345.
    [11] Taha E, Mohamed Z, Kamal Y T. Terminal Sliding Mode Control for the Trajectory Tracking of Underactuated Autonomous Underwater Vehicles[J]. Ocean Engineering, 2017, 129: 613-625.
    [12] Yan Y, Yu X H, Sun C. Quantization Effect on Sliding Mode Control of Uncertain Dynamical Systems[J]. Asian Journal of Control, 2016, 18(3): 1142-1146.
    [13] Corradini M L, Orlando G. Robust Quantized Feedback Stabilization of Linear Systems[J]. Automatica, 2008, 44(9): 2458-2462.
    [14] 薛艳梅, 郝立颖. 量化参数不匹配的线性系统监督滑模控制设计[J]. 计算机工程与应用, 2015, 51(15): 22-27.

    Xue Yan-mei, Hao Li-ying. Supervisory-based Sliding Mode Control Design for a Class of Linear Systems Subject to Quantization Parameter Mismatch[J]. Computer Engineering and Applications, 2015, 51(15): 22-27.
    [15] Hao L Y, Yang G H. Robust Fault Tolerant Control Based on Sliding Mode Method for Uncertain Linear Systems with Quantization[J]. ISA transactions, 2013, 227(9): 692- 703.
    [16] Tabataba’i-Nasab, Fahimeh S, Keymasi K A, et al. Adaptive Nonlinear Control of an Autonomous Underwater Vehicle[J]. Transactions of the Institute of Measurement and Control, 2019, 41(11): 3121-3131.
    [17] Zheng B C, Yang G H. Quantized Output Feedback Stabilization of Uncertain Systems with Input Nonlin-earities Via Sliding Mode Control[J]. International Journal of Robust and Nonlinear Control, 2014, 24(2): 228-246.
    [18] Chen W H. Disturbance Observer Based Control for Nonlinear Systems[J]. IEEE/ASME Transactions on Mechatronics, 2004, 10(4): 706-710.
    [19] Utkin V. Variable Structure Systems with Sliding Modes[J]. IEEE Transactions on Automatic Control, 1977, 22(2): 212-222.
  • 加载中
计量
  • 文章访问数:  1947
  • HTML全文浏览量:  29
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-19
  • 修回日期:  2020-12-22
  • 刊出日期:  2021-10-31

目录

    /

    返回文章
    返回
    服务号
    订阅号