• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于PILCO算法的智能浮体运动控制方法

张 尚 杨 睿 陈 震 黎 明

张 尚, 杨 睿, 陈 震, 黎 明. 一种基于PILCO算法的智能浮体运动控制方法[J]. 水下无人系统学报, 2021, 29(5): 541-549. doi: 10.11993/j.issn.2096-3920.2021.05.005
引用本文: 张 尚, 杨 睿, 陈 震, 黎 明. 一种基于PILCO算法的智能浮体运动控制方法[J]. 水下无人系统学报, 2021, 29(5): 541-549. doi: 10.11993/j.issn.2096-3920.2021.05.005
ZHANG Shang, YANG Rui, CHEN Zhen, LI Ming. Motion Control Method of Autonomous Surface Vehicle Based on the PILCO Algorithm[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 541-549. doi: 10.11993/j.issn.2096-3920.2021.05.005
Citation: ZHANG Shang, YANG Rui, CHEN Zhen, LI Ming. Motion Control Method of Autonomous Surface Vehicle Based on the PILCO Algorithm[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 541-549. doi: 10.11993/j.issn.2096-3920.2021.05.005

一种基于PILCO算法的智能浮体运动控制方法

doi: 10.11993/j.issn.2096-3920.2021.05.005
基金项目: 国家自然科学基金项目资助(51709245); 国家重点研究发展计划项目资助(2017YFC1405203)
详细信息
    作者简介:

    张 尚(1996-), 男, 在读硕士, 主要研究方向为海上可重构智能浮体控制系统研究.

  • 中图分类号: U674.38 TP242.6 TP181

Motion Control Method of Autonomous Surface Vehicle Based on the PILCO Algorithm

  • 摘要: 随着人们对海洋探索的不断深入, 开发一种自主性强、灵活度高、可重构的智能浮体(ASV)至关重要。文中以四推进器ASV为研究对象, 建立了其动力学模型, 基于概率推理的学习控制算法设计了控制器, 并进行了定点控制和轨迹跟踪的仿真实验。仿真结果表明: ASV仅需进行少量的实验即可获得自主学习控制策略, 在有水流扰动或采用近似动力学模型时, 能够实现对其的运动控制, 从而验证了文中算法的有效性。

     

  • [1] Park S, Kayacan E, Ratti C, et al. Coordinated Control of a Reconfigurable Multi-vessel Platform: Robust Control Approach[C]//2019 International Conference on Robotics and Automation(ICRA). Montreal, Canada: IEEE, 2019.
    [2] Lu Y, Zhang G, Qiao L, et al. Adaptive Output-feedback Formation Control for Underactuated Surface Vessels[J]. International Journal of Control, 2020, 93(3): 400-409.
    [3] Woo J, Yu C, Kim N. Deep Reinforcement Learning-based Controller for Path Following of an Unmanned Surface Vehicle[J]. Ocean Engineering, 2019, 183: 155-166.
    [4] Paulos J, Eckenstein N, Tosun T, et al. Automated Self-assembly of Large Maritime Structures by a Team of Robotic Boats[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(3): 958-968.
    [5] Wang W, Mateos L A, Park S, et al. Design, Modeling, and Nonlinear Model Predictive Tracking Control of a Novel Autonomous Surface Vehicle[C]//2018 IEEE International Conference on Robotics and Automation(ICRA). Brisbane, Australia: IEEE, 2018: 6189-6196.
    [6] Mnih V, Kavukcuoglu K, Silver D, et al. Playing Atari with Deep Reinforcement Learning[J]. arXiv, (2013-12-19) [2021-09-01]. https://arxiv.org/abs/1312.5602.
    [7] Deisenroth M, Rasmussen C E. PILCO: A Model-based and Data-efficient Approach to Policy Search[C]// Proceedings of the 28th International Conference on Machine Learning(ICML-11). Bellevue, Washington, USA: ICML, 2011: 465-472.
    [8] Ramirez W A, Leong Z Q, Nguyen H D, et al. Exploration of the Applicability of Probabilistic Inference for Learning Control in Underactuated Autonomous Underwater Vehicles[J]. Autonomous Robots, 2020, 44(6): 1121-1134.
    [9] 郭宪. 深入浅出强化学习: 原理入门[M]. 北京: 电子工业出版社, 2018.
    [10] Fossen T I. Guidance and Control of Ocean Vehicles[M]. New Jersey: John Wiley & Sons, 1994.
    [11] 陈虹, 刘志远, 解小华. 非线性模型预测控制的现状与问题[J]. 控制与决策, 2001, 16(4): 385-391.

    Chen Hong, Liu Zhi-yuan, Xie Xiao-hua. Nonlinear Model Predictive Control: The State and Open Problems[J]. Control and Decision, 2001, 16(4): 385-391.
    [12] Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous Control with Deep Reinforcement Learning[EB/OL]. ArXiv, (2015 -09-01) [2021-09-01]. https://www.researchgate.net/publ- ication/281670459_Continuous_control_with_deep_rein- forcement_learning.
  • 加载中
计量
  • 文章访问数:  99
  • HTML全文浏览量:  4
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-20
  • 修回日期:  2020-12-17
  • 刊出日期:  2021-10-31

目录

    /

    返回文章
    返回
    服务号
    订阅号