• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种适用于水下距离徙动目标的稳健自适应检测算法

宋 琼 闫 晟 郝程鹏 侯朝焕

宋 琼, 闫 晟, 郝程鹏, 侯朝焕. 一种适用于水下距离徙动目标的稳健自适应检测算法[J]. 水下无人系统学报, 2021, 29(5): 533-540. doi: 10.11993/j.issn.2096-3920.2021.05.004
引用本文: 宋 琼, 闫 晟, 郝程鹏, 侯朝焕. 一种适用于水下距离徙动目标的稳健自适应检测算法[J]. 水下无人系统学报, 2021, 29(5): 533-540. doi: 10.11993/j.issn.2096-3920.2021.05.004
SONG Qiong, YAN Sheng, HAO Cheng-peng, HOU Chao-huan. Robust Adaptive Detection Algorithm of Underwater Targets under Range Cell Migration[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 533-540. doi: 10.11993/j.issn.2096-3920.2021.05.004
Citation: SONG Qiong, YAN Sheng, HAO Cheng-peng, HOU Chao-huan. Robust Adaptive Detection Algorithm of Underwater Targets under Range Cell Migration[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 533-540. doi: 10.11993/j.issn.2096-3920.2021.05.004

一种适用于水下距离徙动目标的稳健自适应检测算法

doi: 10.11993/j.issn.2096-3920.2021.05.004
基金项目: 国家自然科学基金项目资助(61971412)
详细信息
    作者简介:

    宋 琼(1997-), 女, 在读硕士, 主要研究方向为水声信号处理.

  • 中图分类号: TJ630 TN911.7

Robust Adaptive Detection Algorithm of Underwater Targets under Range Cell Migration

  • 摘要: 在水下目标自适应检测中, 目标的高速运动会引起距离徙动(RCM)现象, 从而导致检测性能下降。同时, 由于水下环境的复杂性, 还面临着辅助数据严重不足的问题。为解决以上问题, 文中提出一种新的自适应检测算法, 首先基于模型阶数选择方法, 将声呐回波信号表示为多个时域序列形式, 随后利用对称线阵协方差矩阵的斜对称结构对RCM目标的多元假设检验模型进行改进, 进一步提出基于斜对称广义信息准则自适应匹配滤波(PG-AMF) 检测算法。仿真结果显示, PG-AMF算法降低了对辅助数据的依赖, 能够较为准确地估计出RCM目标回波的分布情况, 进而取得良好的目标检测性能。

     

  • [1] 朱埜. 主动声纳检测信息原理[M]. 北京: 科学出版社, 2014.
    [2] 杨崇林, 姚蓝. 水下高速小目标探测中的信号波形设计研究[J]. 声学学报, 2001(5): 389-394.

    Yang Chong-lin, Yao Lan. Study on the Signal Waveform Design to Detect an Underwater High-speed Small Target[J]. Acta Acustica, 2001(5): 389-394.
    [3] 郝程鹏, 施博, 闫晟, 等. 主动声纳混响抑制与目标检测技术[J]. 科技导报, 2017, 35(20): 102-108.

    Hao Cheng-peng, Shi Bo, Yan Sheng, et al. Reverberation Suppression And Target Detection for Active Sonar[J]. Science & Technology Review, 2017, 35(20): 102-108.
    [4] L?mo T I B, Austeng A, Hansen R E. Improving Swath Sonar Water Column Imagery and Bathymetry with Adaptive Beamforming[J]. IEEE Journal of Oceanic Engineering, 2020, 45(4): 1552-1563.
    [5] 陈鹏, 侯朝焕, 马晓川, 等. 基于匹配滤波和离散分数阶傅里叶变换的水下动目标LFM回波联合检测[J]. 电子与信息学报, 2007(10): 2305-2308.

    Chen Peng, Hou Chao-huan, Ma Xiao-chuan, et al. The Joint Detection to Underwater Moving Target’s LFM Echo Based on Matched Filter and Discrete Fractional Fourier Transform[J]. Journal of Electronics & Information Technology, 2007(10): 2305-2308.
    [6] 王静, 黄建国. 水下小孔径阵列自适应匹配滤波检测方法[J]. 电子与信息学报, 2011, 33(6): 1385-1389.

    Wang Jing, Huang Jian-guo. Adaptive Matched Filter Detection Method on Underwater Small Aperture Array[J]. Journal of Electronics& Information Technology, 2011, 33(6): 1385-1389.
    [7] Farrell M D, Mersereau R M. On the Impact of Covariance Contamination for Adaptive Detection in Hyperspectral Imaging[J]. IEEE Signal Processing Letters, 2005, 12(9): 649-652.
    [8] 沈福民. 自适应信号处理[M]. 西安: 西安电子科技大学出版社, 2001.
    [9] Reed I S, Mallett J D, Brennan L E. Rapid Convergence Rate in Adaptive Arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853-863.
    [10] Hao C, Orlando D, Foglia G, et al. Knowledge-Based Adaptive Detection: Joint Exploitation of Clutter and System Symmetry Properties[J]. IEEE Signal Processing Letters, 2016, 23(10): 1489-1493.
    [11] Hao C, Gazor S, Foglia G, et al. Persymmetric Adaptive Detection and Range Estimation of a Small Target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2590-2604.
    [12] Wang Y L, Liu W J, Xie W C, et al. Reduced-rank Space-time Adaptive Detection for Airborne Radar[J]. Science China Information Sciences, 2014, 57(8): 106- 116.
    [13] Hague D A, Buck J R. The Generalized Sinusoidal Frequency-Modulated Waveform for Active Sonar[J]. IEEE Journal of Oceanic Engineering, 2017, 42(1): 109-123.
    [14] Changcun S, Zhiliang R, Yaobo L, et al. An Algorithm for Estimating Doppler Frequency of Underwater High-speed Moving Target[C]//2010 IEEE International Conference on Intelligent Computing and Intelligent Systems, Xiamen, China: IEEE, 2010: 14-17.
    [15] Brennan L E, Reed L S. Theory of Adaptive Radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, AES-9(2): 237-252.
    [16] Reed I S, Mallett J D, Brennan L E. Rapid Convergence Rate in Adaptive Arrays[J]. IEEE Transactions on Aerospace and Electronic Systems,1974, AES-10(6): 853-863.
    [17] Wu W, Wang G H, Sun J P. Polynomial Radon-Polynomial Fourier Transform for Near Space Hypersonic Maneuvering Target Detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1306-1322.
    [18] Erdogan A Y, Gulum T O, Durakata L, et al. FMCW Signal Detection and Parameter Extraction by Cross Wigner–Hough Transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 334-344.
    [19] Zhu D, Li Y, Zhu Z. A Keystone Transform Without Interpolation for SAR Ground Moving-Target Imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 18-22.
    [20] Zeng C, Li D, Luo X, et al. Ground Maneuvering Targets Imaging for Synthetic Aperture Radar Based on Second-Order Keystone Transform and High-Order Motion Parameter Estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(11): 4486-4501.
    [21] 刘慧敏. 基于多普勒敏感信号声图像序列的水下运动小目标探测方法[D]. 哈尔滨: 哈尔滨工程大学, 2019.
    [22] Addabbo P, Orlando D, Ricci G. Adaptive Radar Detection of Dim Moving Targets in Presence of Range Migration[J]. IEEE Signal Processing Letters, 2019, 26(10): 1461-1465.
    [23] Stoica P, Selen Y. Model-order Selection: A Review of Information Criterion Rules[J]. IEEE Signal Processing Magazine, 2004, 21(4): 36-47.
    [24] 李娜, 郝程鹏, 施博, 等. 水下修正空时自适应检测的性能分析[J]. 水下无人系统学报, 2018, 26(2): 133-139.

    Li Na, Hao Cheng-peng, Shi Bo, et al. Performance An- alysis of Underwater Modified Space-Time Adaptive Detection[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 133-139.
    [25] Conte E, Maio A D, Ricci G. GLRT-based Adaptive Detection Algorithms for Range-spread Targets[J]. IEEE Transactions on Signal Processing, 2001, 49(7): 1336-1348.
    [26] Robey F C, Fuhrman D L, Kelly E J, et al. A CFAR Adaptive Matched Filter Detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 29(1): 208-216.
    [27] Keh-Chiarng H, Chien-Chung Y. A Unitary Transforma- tion Method for Angle-of-arrival Estimation[J]. IEEE Transactions on Signal Processing, 1991, 39(4): 975-977.
  • 加载中
计量
  • 文章访问数:  83
  • HTML全文浏览量:  4
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 修回日期:  2021-03-09
  • 刊出日期:  2021-10-31

目录

    /

    返回文章
    返回
    服务号
    订阅号